Chromium toxicity impairs the productivity of rice crops and raises a major concern worldwide and thus, it calls for unconventional and sustainable means of crop production. In this study, we identified the implication of zinc oxide nanoparticles (ZnO NPs) in promoting plant growth and ameliorating chromium-induced stress in seedlings of rice (Oryza sativa). This investigation demonstrates that the exogenous supplementation of ZnO NPs at 25 μM activates defense mechanisms conferring rice seedlings significant tolerance against stress imposed by the exposure of 100 μM Cr(VI). Further, supplementation of this nanofertilizer reversed the inhibitory effects of Cr(VI) on growth and photosynthetic efficiency. The growth promotion was primarily associated with the function of ZnO NPs in inducing activity of antioxidative enzymes i.e. APX, DHAR, MDHAR and GR belonging to the ascorbate-glutathione cycle in the Cr-exposed seedlings, exceeding the levels in control. The overexpression of these antioxidative genes correlated concomitantly with the decrease of oxidants including SOR and HO and the increase in the levels of non-enzymatic antioxidants: AsA and GSH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134554DOI Listing

Publication Analysis

Top Keywords

zno nps
12
zinc oxide
8
oxide nanoparticles
8
application zinc
4
nanoparticles fertilizer
4
fertilizer boosts
4
growth
4
boosts growth
4
rice
4
growth rice
4

Similar Publications

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

Size Distribution of Zinc Oxide Nanoparticles Depending on the Temperature of Electrochemical Synthesis.

Materials (Basel)

January 2025

Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116 B, 30-149 Krakow, Poland.

One of the methods for obtaining zinc oxide nanoparticles (ZnO NPs) is electrochemical synthesis. In this study, the anodic dissolution process of metallic zinc in alcohol solutions of LiCl was used to synthesize ZnO NPs. The products were obtained as colloidal suspensions in an electrolyte solution.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Cytotoxicity and genotoxicity of zinc oxide nanoparticles in human peripheral blood mononuclear cells.

Mutat Res Genet Toxicol Environ Mutagen

January 2025

Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia. Electronic address:

Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro.

View Article and Find Full Text PDF

Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!