Background: Inappropriate polypharmacy has been linked with adverse outcomes in older, multimorbid adults. OPERAM is a European cluster-randomized trial aimed at testing the effect of a structured pharmacotherapy optimization intervention on preventable drug-related hospital admissions in multimorbid adults with polypharmacy aged 70 years or older. Clinical results of the trial showed a pattern of reduced drug-related hospital admissions, but without statistical significance. In this study we assessed the cost-effectiveness of the pharmacotherapy optimisation intervention.
Methods: We performed a pre-planned within-trial cost-effectiveness analysis (CEA) of the OPERAM intervention, from a healthcare system perspective. All data were collected within the trial apart from unit costs. QALYs were computed by applying the crosswalk German valuation algorithm to EQ-5D-5L-based quality of life data. Considering the clustered structure of the data and between-country heterogeneity, we applied Generalized Structural Equation Models (GSEMs) on a multiple imputed sample to estimate costs and QALYs. We also performed analyses by country and subgroup analyses by patient and morbidity characteristics.
Results: Trial-wide, the intervention was numerically dominant, with a potential cost-saving of CHF 3'588 (95% confidence interval (CI): -7'716; 540) and gain of 0.025 QALYs (CI: -0.002; 0.052) per patient. Robustness analyses confirmed the validity of the GSEM model. Subgroup analyses suggested stronger effects in people at higher risk.
Conclusion: We observed a pattern towards dominance, potentially resulting from an accumulation of multiple small positive intervention effects. Our methodological approaches may inform other CEAs of multi-country, cluster-randomized trials facing presence of missing values and heterogeneity between centres/countries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000111 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265507 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!