Traditional detection methods have shortcomings such as time-consumption and requirement of large instruments, which cannot meet the demands for on-site detection or analysis. Silicon nanowire-field-effect transistor (SiNW-FET) biosensors have the advantages of high speed, high sensitivity, strong specificity, and ease of integration. However, SiNW-FET biosensors also have some demerits: they are too sensitive, environmental factors such as light, temperature, and pH easily cause interference, and their performance uniformity needs to be calibrated in advance. In this work, we constructed a self-contained and integrated microfluidic nano-detection system containing a SiNW-FET biosensor for bio-detection and analysis. All analysis processes including liquid sample delivery, optical modulation, constant temperature control, signal amplification and data acquisition, and result display were automatically performed. In series tests including light-guided ones by analyzing various types of samples with an automatic sample injection mode, the system shows good stability and robustness. Its signal accuracy was verified using a commercial high-precision ammeter ( = 0.9988), too. The feasibility of the system for bio-detection was verified using simulant samples of the typical microorganism with a limit of detection of 1.0 fg mL. Furthermore, the process of the binding-dissociation of antibody-protein pairs was analyzed using the system, demonstrating the potential for molecular interaction analysis. This system is highly integrated, small in size, and easy to carry, which will be developed into a portable device for on-site bio-detection and analysis of molecular interactions to enable environmental testing, medical research, food and agricultural safety, military medicine,

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1lc01056eDOI Listing

Publication Analysis

Top Keywords

self-contained integrated
8
integrated microfluidic
8
microfluidic nano-detection
8
nano-detection system
8
analysis molecular
8
molecular interactions
8
sinw-fet biosensors
8
bio-detection analysis
8
system
6
analysis
6

Similar Publications

In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

The traditional architectural design of care institutions is characterised by limited privacy, autonomy, user involvement, and rigidity in scheduling. In contrast, the Person-Centred Care (PCC) model presents an alternative approach to care provision, emphasising the active participation of the care recipient, involvement of the family, flexible scheduling, as well as a close relationship between users and caregivers. This approach requires reorganising facilities into smaller, more compact, self-contained units, known as living units.

View Article and Find Full Text PDF

Due to increasing traffic congestion, travel modeling has gained importance in the development of transportion mode detection (TMD) strategies over the past decade. Nowadays, recent smartphones, equipped with integrated inertial measurement units (IMUs) and embedded algorithms, can play a crucial role in such development. In particular, obtaining much more information on the transportation modes used by users through smartphones is very challenging due to the variety of the data (accelerometers, magnetometers, gyroscopes, proximity sensors, etc.

View Article and Find Full Text PDF

A Fully Integrated Orthodontic Aligner With Force Sensing Ability for Machine Learning-Assisted Diagnosis.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China.

Currently, the diagnosis of malocclusion is a highly demanding process involving complicated examinations of the dental occlusion, which increases the demand for innovative tools for occlusal data monitoring. Nevertheless, continuous wireless monitoring within the oral cavity is challenging due to limitations in sampling and device size. In this study, by embedding high-performance piezoelectric sensors into the occlusal surfaces using flexible printed circuits, a fully integrated, flexible, and self-contained transparent aligner is developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!