Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The type I toxin-antitoxin locus is situated between genes for two paralogous mannitol family phosphoenolpyruvate phosphotransferase systems (PTSs). In order to address the possibility that function was associated with sugar metabolism, genetic and phenotypic analyses were performed on the flanking genes. It was found that the genes were transcribed as two operons: the downstream operon essential for mannitol transport and metabolism and the upstream operon performing a regulatory function. In addition to genes for the PTS components, the upstream operon harbors a gene similar to , the key regulator of mannitol metabolism in other Gram-positive bacteria. We confirmed that this gene is essential for the regulation of the downstream operon and identified putative phosphorylation sites required for carbon catabolite repression and mannitol-specific regulation. Genomic comparisons revealed that this dual-operon organization of mannitol utilization genes is uncommon in enterococci and that the association with a toxin-antitoxin system is unique to Enterococcus faecalis. Finally, we consider possible links between function and mannitol utilization. Enterococcus faecalis is both a common member of the human gut microbiota and an opportunistic pathogen. Its evolutionary success is partially due to its metabolic flexibility, in particular its ability to import and metabolize a wide variety of sugars. While a large number of phosphoenolpyruvate phosphotransferase sugar transport systems have been identified in the E. faecalis genome bioinformatically, the specificity and regulation of most of these systems remain undetermined. Here, we characterize a complex system of two operons flanking a type I toxin-antitoxin system required for the transport and metabolism of the common dietary sugar mannitol. We also determine the phylogenetic distribution of mannitol utilization genes in the enterococcal genus and discuss the significance of the association with toxin-antitoxin systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112947 | PMC |
http://dx.doi.org/10.1128/jb.00047-22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!