Objectives: To analyze and evaluate the effectiveness of the detection of single autoantibody and combined autoantibodies in patients with rheumatoid arthritis (RA) and related autoimmune diseases and establish a machine learning model to predict the disease of RA.

Methods: A total of 309 patients with joint pain as the first symptom were retrieved from the database. The effectiveness of single and combined antibodies tests was analyzed and evaluated in patients with RA, a cost-sensitive neural network (CSNN) model was used to integrate multiple autoantibodies and patient symptoms to predict the diagnosis of RA, and the ROC curve was used to analyze the diagnosis performance and calculate the optimal cutoff value.

Results: There are differences in the seropositive rate of autoimmune diseases, the sensitivity and specificity of single or multiple autoantibody tests were insufficient, and anti-CCP performed best in RA diagnosis and had high diagnostic value. The cost-sensitive neural network prediction model had a sensitivity of up to 0.90 and specificity of up to 0.86, which was better than a single antibody and combined multiple antibody detection.

Conclusion: In-depth analysis of autoantibodies and reliable early diagnosis based on the neural network could guide specialized physicians to develop different treatment plans to prevent deterioration and enable early treatment with antirheumatic drugs for remission. Key Points • There are differences in the seropositive rate of autoimmune diseases. • This is the first study to use a cost-sensitive neural network model to diagnose RA disease in patients. • The diagnosis effect of the cost-sensitive neural network model is better than a single antibody and combined multiple antibody detection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10067-022-06109-yDOI Listing

Publication Analysis

Top Keywords

neural network
24
cost-sensitive neural
20
autoimmune diseases
12
rheumatoid arthritis
8
differences seropositive
8
seropositive rate
8
rate autoimmune
8
better single
8
single antibody
8
antibody combined
8

Similar Publications

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Neural Network (S-CNN) that achieved an F1 score of 82.

View Article and Find Full Text PDF

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).

View Article and Find Full Text PDF

Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

View Article and Find Full Text PDF

Cardiac MR image reconstruction using cascaded hybrid dual domain deep learning framework.

PLoS One

January 2025

Medical Image Processing Research Group (MIPRG), Dept. of Elect. & Comp. Engineering, COMSATS University Islamabad, Islamabad, Pakistan.

Recovering diagnostic-quality cardiac MR images from highly under-sampled data is a current research focus, particularly in addressing cardiac and respiratory motion. Techniques such as Compressed Sensing (CS) and Parallel Imaging (pMRI) have been proposed to accelerate MRI data acquisition and improve image quality. However, these methods have limitations in high spatial-resolution applications, often resulting in blurring or residual artifacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!