Starch is an important primary metabolite in plants, which can provide bioenergy for fuel ethanol production. There are many studies focusing on starch metabolism in Arabidopsis, maize, and rice, but few reports have been made on the starch content of tobacco leaves. Hence, to identify the marker-trait associations and isolate the candidate genes related to starch content of tobacco leaf, the genome-wide association study (GWAS) was performed using a multiparent advanced generation intercross (MAGIC) population consisting of 276 accessions genotyped by a 430 K SNP array. In this study, we detected the leaf starch content of tobacco plants cultivated in two places (Zhucheng and Chenzhou), which showed a wide variation of starch content in the population. A total of 28 and 45 significant single-nucleotide polymorphism (SNP) loci associated with leaf starch content were identified by single-locus and multi-locus GWAS models, respectively, and the phenotypic variance explained by these loci varied from 1.80 to - 14.73%. Furthermore, among these quantitative trait loci (QTLs), one SNP, AX-106011713 located on chromosome 19, was detected repeatedly in multiple models and two environments, which was selected for linkage disequilibrium (LD) analysis to obtain the target candidate region. Through gene annotation, haplotype, and gene expression analysis, two candidate genes encoding E3 ubiquitin-protein ligase (Ntab0823160) and fructose-bisphosphate aldolase (Ntab0375050) were obtained. Results showed that the variety carrying the beneficial alleles of the two candidate genes had higher gene expression level and leaf starch content, suggesting the potential role of candidate genes in enhancing the level of tobacco leaf starch content. Furthermore, silencing of Ntab0823160 in tobacco leaves reduced the content of total starch to 39.41-69.75% of that in the wide type plants. Taken together, our results provide useful resources for further investigation of the starch metabolic pathway and are also beneficial for the creation of eco-friendly cultivars with increased accumulation of leaf starch content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-022-00851-x | DOI Listing |
Foods
January 2025
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
Numerous reports have indicated that the type 3 resistant starch (RS3) derived from can regulate lipid metabolism. However, it remains unclear whether the type 5 resistant starch (RS5) exhibits similar effects. In this study, RS5 was prepared from native starch and lauric acid through a hydrothermal method for the first time, and its nutritional intervention effects on hyperlipidemia in mice were investigated.
View Article and Find Full Text PDFFoods
December 2024
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
Yam noodles were produced by replacing high-gluten wheat flour with yam flour modified with plasma-activated water and twin-screw extrusion (PAW-TSE). The effects of varying amounts of modified yam flour on the color, cooking characteristics, texture, and in vitro digestibility of the noodles were investigated. As the amount of modified yam flour increased, the noodles became darker in color, while the bound water content increased, and the free water content decreased.
View Article and Find Full Text PDFFoods
December 2024
School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China.
The polyphenol-starch complex has become a hot research topic since it is evident that this modification method can alter the physicochemical properties of starch as well as improve its nutritional value. This work aimed to evaluate the effect of ginger polyphenol gingerols (GNs) and shogaols (SNs) on the structure of starch with different amylose content (WCS, CS, G56, G80). Textural and rheological results indicated that GNs and SNs had more pronounced inhibitory retrogradation effects for relative low-level amylose starches (WCS and CS) compared to relative high-level amylose starches (G56 and G80).
View Article and Find Full Text PDFFoods
December 2024
Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.
The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszow, 35-959 Rzeszow, Poland.
Adipose tissue of obese people secretes a number of adipokines, including adiponectin and resistin, which have an antagonistic effect on the human metabolism, influencing the pathogenesis of many diseases based on low-grade inflammation. Body composition analysis using bioelectrical impedance analysis (BIA) was performed in 84 adults with obesity, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!