Chemoresistance is associated with tumor recurrence, metastases, and short survival. Cisplatin is one of the most used chemotherapies in cancer treatment, including head and neck squamous cell carcinoma (HNSCC), and many patients develop resistance. Here, we established cell lines resistant to cisplatin to better understand epigenetics and biological differences driving the progression of HNSCC after treatment. Cisplatin resistance was established in CAL-27 and SCC-9 cell lines. Gene expression of HDAC1, HDAC2, SIRT1, MTA1, KAT2B, KAT6A, KAT6B, and BRD4 indicated the cisplatin activates the epigenetic machinery. Increases in tumor aggressiveness were detected by BMI-1 and KI-67 in more resistant cell lines. Changes in cellular shape and epithelial-mesenchymal transition (EMT) activation were also observed. HDAC1 and ZEB1 presented an opposite distribution with down-regulation of HDAC1 and up-regulation of ZEB1 in the course of chemoresistance. Up-regulation of ZEB1 and BMI-1 in patients with HNSCC is also associated with a poor response to therapy. Cancer stem cells (CSC) population increased significantly with chemoresistance. Down-regulation of HDAC1, HDAC2, and SIRT1 and accumulation of Vimentin and ZEB1 were observed in the CSC population. Our results suggest that in the route to cisplatin chemoresistance, epigenetic modifications can be associated with EMT activation and CSC accumulation which originate more aggressive tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/odi.14209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!