Current environmental monitoring efforts often focus on known, regulated contaminants ignoring the potential effects of unmeasured compounds and/or environmental factors. These specific, targeted approaches lack broader environmental information and understanding, hindering effective environmental management and policy. Switching to comprehensive, untargeted monitoring of contaminants, organism health, and environmental factors, such as nutrients, temperature, and pH, would provide more effective monitoring with a likely concomitant increase in environmental health. However, even this method would not capture subtle biochemical changes in organisms induced by chronic toxicant exposure. Ecosurveillance is the systematic collection, analysis, and interpretation of ecosystem health-related data that can address this knowledge gap and provide much-needed additional lines of evidence to environmental monitoring programs. Its use would therefore be of great benefit to environmental management and assessment. Unfortunately, the science of 'ecosurveillance', especially omics-based ecosurveillance is not well known. Here, we give an overview of this emerging area and show how it has been beneficially applied in a range of systems. We anticipate this review to be a starting point for further efforts to improve environmental monitoring via the integration of comprehensive chemical assessments and molecular biology-based approaches. Bringing multiple levels of omics technology-based assessment together into a systems-wide ecosurveillance approach will bring a greater understanding of the environment, particularly the microbial communities upon which we ultimately rely to remediate perturbed ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023019 | PMC |
http://dx.doi.org/10.1042/ETLS20210261 | DOI Listing |
Small
January 2025
Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
In Sweden, reforestation of managed forests relies predominantly on planting nursery-produced tree seedlings. However, the intense production using containerized cultivation systems (e.g.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.
View Article and Find Full Text PDFJACC Adv
December 2024
Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
Background: Air pollution is a significant environmental risk factor for cardiovascular diseases (CVDs), but its impact on African populations is under-researched due to limited air quality data and health studies.
Objectives: The purpose of this study was to synthesize available research on the effects of air pollution on CVDs outcomes in African populations, identify knowledge gaps, and suggest areas for research and policy intervention.
Methods: A systematic search of PubMed was conducted using terms capturing criteria ambient air pollutants (for example particulate matter, nitrogen dioxide, ozone, and sulfur dioxide) and CVDs and countries in Africa.
Background: Continuous anticoagulation based on the CHA2DS2-VASc score is recommended to prevent embolism caused by atrial fibrillation (AF), but it does not consider AF episodes. The Apple Watch's continuous heart rhythm monitoring and fast-acting direct oral anticoagulants (DOACs) could enable precise, episode-tailored anticoagulation, reducing bleeding risks while preventing stroke. This study evaluates Apple Watch-guided personalized anticoagulation therapy, adjusting DOAC usage based on real-time AF detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!