A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Daylength Shapes Entrainment Patterns to Artificial Photoperiods in a Subterranean Rodent. | LitMetric

Daylength Shapes Entrainment Patterns to Artificial Photoperiods in a Subterranean Rodent.

J Biol Rhythms

Laboratorio de Cronobiología Binacional Argentina-Brasil, Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja, Anillaco, Argentina.

Published: June 2022

Photoperiodism plays an important role in the synchronization of seasonal phenomena in various organisms. In mammals, photoperiod encoding is mediated by differential entrainment of the circadian system. The limits of daily light entrainment and photoperiodic time measurement can be verified in organisms that inhabit extreme photic environments, such as the subterranean. In this experimental study, we evaluated entrainment of circadian wheel-running rhythms in South American subterranean rodents, the Anillaco tuco-tucos ( aff. ), exposed to different artificial photoperiods, from extremely long to extremely short photophases (LD 21:3, LD 18:6, LD 15:9, LD 9:15, LD 6:18 and LD 3:21). Artificial photoperiods synchronized their activity/rest rhythms and clear differences occurred in (a) phase angles of entrainment relative to the LD cycle and (b) duration of the daily activity phase α. These photoperiod-dependent patterns of entrainment were similar to those reported for epigeous species. Release into constant darkness conditions revealed aftereffects of entrainment to different photoperiods, observed in α but not in the free-running period τ. We also verified if animals coming from summer and winter natural photoperiods entrained equally to the artificial photoperiods by evaluating their phase angle of entrainment, α and τ aftereffects. To this end, experimental animals were divided into "Matching" and "Mismatching" groups, based on whether the experimental photoperiod (short-day [L < 12 h] or long-day [L > 12 h]) matched or not the natural photoperiod to which they had been previously exposed. No significant differences were found in the phase angle of entrainment, α and τ aftereffects in each artificial photoperiod. Our results indicate that the circadian clocks of tuco-tucos are capable of photoperiodic time measurement despite their natural subterranean habits and that the final entrainment patterns achieved by the circadian clock do not depend on the photoperiodic history.

Download full-text PDF

Source
http://dx.doi.org/10.1177/07487304221085105DOI Listing

Publication Analysis

Top Keywords

artificial photoperiods
16
entrainment
10
entrainment patterns
8
entrainment circadian
8
photoperiodic time
8
time measurement
8
phase angle
8
angle entrainment
8
entrainment aftereffects
8
photoperiods
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!