Pregnancy represents a unique tolerogenic immune state which may alter susceptibility to infection and vaccine response. Here, we characterized humoral immunity to seasonal influenza vaccine strains in pregnant and non-pregnant women. Although serological responses to influenza remained largely intact during late pregnancy, distinct modifications were observed. Pregnant women had reduced hemagglutinin subtype-1 (H1)- IgG, IgG1, IgG2, and IgG3, hemagglutination inhibition, and group 1 and 2 stem IgG titers. Intriguingly, H1-specific avidity and FcγR1 binding increased, and influenza antibodies had distinct Fc and Fab glycans characterized by increased di-galactosylation and di-sialylation. H1-specific Fc-functionality (i.e. monocyte phagocytosis and complement deposition) was moderately reduced in pregnancy. Multivariate antibody analysis revealed two distinct populations (pregnant vs. non-pregnant) segregated by H1 FcγR1 binding, H1-IgG levels, and Fab and Fc glycosylation. Our results demonstrated a structural and functional modulation of influenza humoral immunity during pregnancy that was antigen-specific and consistent with reduced inflammation and efficient placental transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991102PMC
http://dx.doi.org/10.1016/j.isci.2022.104088DOI Listing

Publication Analysis

Top Keywords

influenza antibodies
8
humoral immunity
8
pregnant non-pregnant
8
fcγr1 binding
8
influenza
5
pregnancy
5
functional structural
4
structural modifications
4
modifications influenza
4
antibodies pregnancy
4

Similar Publications

Safety and immunogenicity of ascending doses of influenza A(H7N9) inactivated vaccine with or without MF59®.

Vaccine

January 2025

Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Introduction: While it remains impossible to predict the timing of the next influenza pandemic, novel avian influenza A viruses continue to be considered a significant threat.

Methods: A Phase II study was conducted in healthy adults aged 18-64 years to assess the safety and immunogenicity of two intramuscular doses of pre-pandemic 2017 influenza A(H7N9) inactivated vaccine administered 21 days apart. Participants were randomized (n = 105 in each of Arms 1-3) to receive 3.

View Article and Find Full Text PDF

Background: Seasonal vaccination is the mainstay of human influenza prevention. Licensed influenza vaccines are regularly updated to account for viral mutations and antigenic drift and are standardised for their haemagglutinin content. However, vaccine effectiveness remains suboptimal.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels.

View Article and Find Full Text PDF

We isolated three genotypes of highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.

View Article and Find Full Text PDF

Asymptomatic infection and antibody prevalence to co-occurring avian influenza viruses vary substantially between sympatric seabird species following H5N1 outbreaks.

Sci Rep

January 2025

Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.

Emerging infectious diseases are of major concern to animal and human health. Recent emergence of high pathogenicity avian influenza virus (HPAIV) (H5N1 clade 2.3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!