Epigenetic regulation of hematopoietic stem cell homeostasis.

Blood Sci

Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.

Published: August 2019

As one of the best characterized adult stem cells, hematopoietic stem cell (HSC) homeostasis is of great importance to hematopoiesis and immunity due to HSC's abilities of self-renewal and multi-lineage differentiation into functional blood cells. However, excessive self-renewal of HSCs can lead to severe hematopoietic malignancies like leukemia, whereas deficient self-renewal of HSCs may result in HSC exhaustion and eventually apoptosis of specialized cells, giving rise to abnormalities such as immunodeficiency or anemia. How HSC homeostasis is maintained has been studied for decades and regulatory factors can be generally categorized into two classes: genetic factors and epigenetic factors. Although genetic factors such as signaling pathways or transcription factors have been well explored, recent studies have emerged the indispensable roles of epigenetic factors. In this review, we have summarized regulatory mechanisms of HSC homeostasis by epigenetic factors, including DNA methylation, histone modification, chromatin remodeling, non-coding RNAs, and RNA modification, which will facilitate applications such as HSC ex vivo expansion and exploration of novel therapeutic approaches for many hematological diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974946PMC
http://dx.doi.org/10.1097/BS9.0000000000000018DOI Listing

Publication Analysis

Top Keywords

hsc homeostasis
12
epigenetic factors
12
hematopoietic stem
8
stem cell
8
self-renewal hscs
8
genetic factors
8
factors
7
hsc
5
epigenetic
4
epigenetic regulation
4

Similar Publications

Engineered nanomaterials (ENM) are capable of crossing the placental barrier and accumulating in fetal tissue. Specifically, the ENM nano-titanium dioxide (nano-TiO), has been shown to accumulate in placental and fetal tissue, resulting in decreased birthweight in pups. Additionally, nano-TiO is an established cardiac toxicant and regulator of glucose homeostasis, and exposure in utero may lead to serious maladaptive responses in cardiac development and overall metabolism.

View Article and Find Full Text PDF

The Innate Lymphoid Cells (ILCs) are a family of innate immune cells composed by the Natural Killer (NK) cells and the helper ILCs (hILCs) (ILC1, ILC2, ILC3), both developing from a common ILC precursor (ILCP) derived from hematopoietic stem cells (HSCs). A correct ILC reconstitution is crucial, particularly in patients receiving HSC transplantation (HSCT), the only therapeutic option for many adult and pediatric high-risk hematological malignancies. Indeed, mainly thanks to their cytotoxic activity, NK cells have a strong Graft-versus-Leukemia (GvL) effect.

View Article and Find Full Text PDF

How age affects human hematopoietic stem and progenitor cells and the strategies to mitigate aging.

Exp Hematol

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China. Electronic address:

Hematopoietic stem cells (HSCs) are central to blood formation and play a pivotal role in hematopoietic and systemic aging. With aging, HSCs undergo significant functional changes, such as an increased stem cell pool, declined homing and reconstitution capacity, and skewed differentiation toward myeloid and megakaryocyte/platelet progenitors. These phenotypic alterations are likely due to the expansion of certain clones, known as clonal hematopoiesis (CH), which leads to disrupted hematopoietic homeostasis, including anemia, impaired immunity, higher risks of hematological malignancies, and even associations with cardiovascular disease, highlighting the broader impact of HSC aging on overall health.

View Article and Find Full Text PDF

Targeting p97/Valosin-Containing Protein Promotes Hepatic Stellate Cell Senescence and Mitigates Liver Fibrosis.

DNA Cell Biol

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.

Liver fibrosis, one of the main histological determinants of various chronic liver diseases, currently lacks effective treatment. Hepatic stellate cells (HSCs) are pivotal in the production of extracellular matrix and amplify the fibrogenic response. Inhibiting the activation of HSCs or promoting the senescence of activated HSCs is crucial for the regression of liver fibrosis.

View Article and Find Full Text PDF

The maintenance of cellular redox balance is crucial for cell survival and homeostasis and is disrupted with aging. Selenoproteins, comprising essential antioxidant enzymes, raise intriguing questions about their involvement in hematopoietic aging and potential reversibility. Motivated by our observation of mRNA downregulation of key antioxidant selenoproteins in aged human hematopoietic stem cells (HSCs) and previous findings of increased lipid peroxidation in aged hematopoiesis, we employed tRNASec gene (Trsp) knockout (KO) mouse model to simulate disrupted selenoprotein synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!