Podocyte damage is strongly associated with the progression of diabetic nephropathy. Mitotic catastrophe plays an essential role in accelerating podocyte loss and detachment from the glomerular basement membrane. In the current study, we observed that the long non-coding RNA (lncRNA) was noticeably upregulated in the plasma and kidney tissues of patients with diabetic nephropathy, and this upregulation was accompanied by higher albumin/creatinine ratios and serum creatinine levels. By generating CRISPR-Cas9 -knockout (KO) mice and employing vectors , we found that the depletion of expression significantly restored slit-diaphragm integrity, attenuated foot process effacement, prevented dedifferentiation, and suppressed mitotic catastrophe in podocytes during hyperglycemia. The mechanistic investigation revealed that increased Sox4 expression and subsequently regulated p53 ubiquitination and acetylation, thereby inhibiting the downstream factors CyclinB/cdc2 by enhancing p21 activity, and that interacted with Sox4 by sponging . Additionally, the inhibition of with an antagomir effectively enhanced glomerular podocyte injury and mitotic dysfunction, eventually exacerbating proteinuria. Based on these findings, may represent a therapeutic target for diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956887 | PMC |
http://dx.doi.org/10.1016/j.omtn.2022.03.001 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Nephrology Department, Sunderland Royal Hospital, Sunderland, UK.
Patients with chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM) face considerable cardiorenal morbidity and mortality despite existing therapies. Recent clinical trials demonstrate the efficacy of finerenone, a novel non-steroidal mineralocorticoid receptor antagonist, in reducing adverse renal and cardiovascular outcomes. This editorial briefly reviews the evidence and its implications for clinical practice, advocating the use of finerenone in these high-risk patients in combination with currently established treatment agents.
View Article and Find Full Text PDFNutrients
January 2025
Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia.
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland.
Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, China.
Objective: This study aims to investigate the relationship between urinary creatinine (UCr) and the risk and severity of Diabetic Kidney Disease (DKD) in patients with Type 2 Diabetes Mellitus (T2DM). The goal is to establish UCr as a potential biomarker for early DKD detection and severity assessment.
Methods: A retrospective cross-sectional analysis was conducted using medical records of T2DM patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!