The gut microbiota is considered a key 'metabolic organ'. Its metabolic activities play essential roles complementary to the host metabolic functions. The interplays between gut microbes and commonly used non-antibiotic drugs have garnered substantial attention over the years. Drugs can reshape the gut microorganism communities and, vice versa, the diverse gut microbes can affect drug efficacy by altering the bioavailability and bioactivity of drugs. The metabolism of drugs by gut microbial action or by microbiota-host cometabolism can transform the drugs into various metabolites. Secondary metabolites produced from the gut microbial metabolism of drugs contribute to both the therapeutic benefits and the side effects. In view of the significant effect of the gut microbiota on drug efficiency and clinical outcomes, it is pivotal to explore the interactions between drugs and gut microbiota underlying medical treatments. In this review, we describe and summarize the complex bidirectional interplays between gut microbes and drugs. We also illustrate the gut-microbiota profile altered by non-antibiotic drugs, the impacts and consequences of microbial alteration, and the biochemical mechanism of microbes impacting drug effectiveness. Understanding how the gut microbes interact with drugs and influence the therapeutic efficacy will help in discovering diverse novel avenues of regulating the gut microbes to improve the therapeutic effects and clinical outcomes of a drug in precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991093 | PMC |
http://dx.doi.org/10.1093/gastro/goac009 | DOI Listing |
Biol Trace Elem Res
January 2025
Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.
View Article and Find Full Text PDFNeotrop Entomol
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry Univ, Fuzhou, China.
The interaction of microbial communities with host immunity has become one of the most explored research areas with significant implications for pest control strategies. It has been found that the gut microbiota plays substantial roles in immune response regulation and host-gut microbiome symbiosis, as well as in pathogen resistance and overall fitness in Tephritidae fruit flies that are major pests of agricultural importance. In this review, we discuss the modulation of immune responses of Tephritidae fruit flies by the gut microbiota with particular emphasis on the general interactions between microbiota and the immune system.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China. Electronic address:
Cr(VI) is widely used in industry and has high toxicity, making it one of the most common environmental pollutants. Long-term exposure to Cr(VI) can cause metabolic disorders and tissue damage. However, the effects of Cr(VI) on liver and gut microbes in fish have rarely been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!