Magnetoencephalography (MEG) signals have demonstrated their practical application to reading human minds. Current neural decoding studies have made great progress to build subject-wise decoding models to extract and discriminate the temporal/spatial features in neural signals. In this paper, we used a compact convolutional neural network-EEGNet-to build a common decoder across subjects, which deciphered the categories of objects (faces, tools, animals, and scenes) from MEG data. This study investigated the influence of the spatiotemporal structure of MEG on EEGNet's classification performance. Furthermore, the EEGNet replaced its convolution layers with two sets of parallel convolution structures to extract the spatial and temporal features simultaneously. Our results showed that the organization of MEG data fed into the EEGNet has an effect on EEGNet classification accuracy, and the parallel convolution structures in EEGNet are beneficial to extracting and fusing spatial and temporal MEG features. The classification accuracy demonstrated that the EEGNet succeeds in building the common decoder model across subjects, and outperforms several state-of-the-art feature fusing methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934895 | PMC |
http://dx.doi.org/10.1007/s11571-021-09717-7 | DOI Listing |
Neuroimage
January 2025
Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:
Optically pumped magnetometer-based magnetoencephalography (OPM-MEG) is an novel non-invasive functional imaging technique that features more flexible sensor configurations and wearability; however, this also increases the requirement for environmental noise suppression. Subspace projection algorithms are widely used in MEG to suppress noise. However, in OPM-MEG systems with a limited number of channels, subspace projection methods that rely on spatial oversampling exhibit reduced performance.
View Article and Find Full Text PDFJ Neurosci
January 2025
School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
Natural scenes are filled with groups of similar items. Humans employ ensemble coding to extract the summary statistical information of the environment, thereby enhancing the efficiency of information processing, something particularly useful when observing natural scenes. However, the neural mechanisms underlying the representation of ensemble information in the brain remain elusive.
View Article and Find Full Text PDFNeuroimage
December 2024
Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Prog Biophys Mol Biol
December 2024
Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey. Electronic address:
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions.
View Article and Find Full Text PDFJ Neural Eng
December 2024
University of California San Francisco, 513 Parnassus Avenue, S362, SAN FRANCISCO, San Francisco, 94143, CHINA.
Objective: Electroencephalography (EEG) and Magnetoencephalography (MEG) are widely used non-invasive techniques in clinical and cognitive neuroscience. However, low spatial resolution measurements, partial brain coverage by some sensor arrays, as well as noisy sensors could result in distorted sensor topographies resulting in inaccurate reconstructions of underlying brain dynamics. Solving these problems has been a challenging task, This paper proposes a robust framework based on electromagnetic source imaging for interpolation of unknown or poor quality EEG/MEG measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!