The architectural drawings of traditional building constructions generally require some design knowledge of the architectural plan to be understood. With the continuous development of the construction industry, the use of three-dimensional (3D) virtual models of buildings is quickly increased. Using three-dimensional models can give people a more convenient and intuitive understanding of the model of the building, and it is necessary for the painter to manually draw the 3D model. By analyzing the common design rules of architectural drawing, this project designed and realized a building three-dimensional reconstruction system that can automatically generate a stereogram (3 ds format) from a building plan (dxf format). The system extracts the building information in the dxf plan and generates a three-dimensional model (3 ds format) after identification and analysis. Three-dimensional reconstruction of architectural drawings is an important application of computer graphics in the field of architecture. The technology is based on computer vision and pattern recognition, supported by artificial intelligence, three-dimensional reconstruction, and other aspects of computer technology and engineering domain knowledge. It specializes in processing architectural engineering drawings with rich semantic information and various description forms to automatically carry out architectural drawing layouts. The high-level information with domain meanings such as the geometry and semantics/functions of graphics of the buildings can be analyzed for forming a complete and independent research system. As a new field of computer technology, the three-dimensional reconstruction drawings are appropriate for demonstrating the characteristics of architectural constructions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989565PMC
http://dx.doi.org/10.1155/2022/6286420DOI Listing

Publication Analysis

Top Keywords

three-dimensional reconstruction
16
architectural drawings
8
architectural drawing
8
3 ds format
8
computer technology
8
architectural
7
three-dimensional
7
building
6
virtual modeling
4
modeling realizations
4

Similar Publications

Background: To compare the effect of minimally invasive and open transforaminal lumbar interbody fusion (TLIF) approaches in fusing the L4-L5 segment and predicting the potential risk of adjacent segment degeneration (ASD).

Methods: A computed tomography scan image was processed and the three-dimensional model of the L1-L5 spine was reconstructed. The minimally invasive and Open TLIF finite element models were constructed.

View Article and Find Full Text PDF

Purpose: Given the potential role of nasolacrimal duct (NLD) morphometry in the aetiology of primary acquired obstructions, it is imperative that clinicians have access to detailed anatomical information. The aim of this study was to determine normative data on nasolacrimal duct morphometry in the Turkish population sample and to provide guidelines for clinicians.

Methods: The study included retrospectively computed tomography images of a healthy Turkish population sample of 151 individuals, 79 of whom were female and 72 of whom were male.

View Article and Find Full Text PDF

Three-dimensional diffractive acoustic tomography.

Nat Commun

January 2025

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.

View Article and Find Full Text PDF

Background And Objective: To assess whether conventional brightness-mode (B-mode) transrectal ultrasound images of the prostate reveal clinically significant cancers with the help of artificial intelligence methods.

Methods: This study included 2986 men who underwent biopsies at two institutions. We trained the PROstate Cancer detection on B-mode transrectal UltraSound images NETwork (ProCUSNet) to determine whether ultrasound can reliably detect cancer.

View Article and Find Full Text PDF

Automatic segmentation of the midfacial bone surface from ultrasound images using deep learning methods.

Int J Oral Maxillofac Surg

January 2025

Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; National Center for Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases, Beijing, China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China. Electronic address:

With developments in computer science and technology, great progress has been made in three-dimensional (3D) ultrasound. Recently, ultrasound-based 3D bone modelling has attracted much attention, and its accuracy has been studied for the femur, tibia, and spine. The use of ultrasound allows data for bone surface to be acquired non-invasively and without radiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!