The 5-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984151 | PMC |
http://dx.doi.org/10.3389/fgene.2022.832547 | DOI Listing |
PLoS One
January 2025
Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.
View Article and Find Full Text PDFPlant Physiol
December 2024
Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil.
Phytohormone signaling is fine-tuned by regulatory feedback loops. The phytohormone abscisic acid (ABA) plays key roles in plant development and abiotic stress tolerance. PYRABACTIN RESISTENCE 1/PYR1-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) receptors sense ABA, and in turn, ABA represses their expression.
View Article and Find Full Text PDFCell Rep
December 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:
Mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors are widely applied to maintain pluripotency, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs). To understand the mechanism of MEK in pluripotency maintenance, we first demonstrated that MEK regulates gene expression at post-transcriptional steps. Consistently, many of the 66 MEK substrates identified by quantitative phosphoproteomics analysis are involved in RNA processing.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
Elife
November 2024
Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.
The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!