Root colonization by filamentous fungi modifies sugar partitioning in plants by increasing the sink strength. As a result, a transcriptional reprogramming of sugar transporters takes place. Here we have further advanced in the characterization of the potato SWEET sugar transporters and their regulation in response to the colonization by symbiotic and pathogenic fungi. We previously showed that root colonization by the AM fungus induces a major transcriptional reprogramming of the 35 potato SWEETs, with 12 genes induced and 10 repressed. In contrast, here we show that during the early colonization phase, the necrotrophic fungus only induces one SWEET transporter, , while represses most of the others (25). StSWEET7a was also induced during root colonization by the hemi-biotrophic fungus f. sp. . StSWEET7a which belongs to the clade II of SWEET transporters localized to the plasma membrane and transports glucose, fructose and mannose. Overexpression of in potato roots increased the strength of this sink as evidenced by an increase in the expression of the cell wall-bound invertase. Concomitantly, plants expressing were faster colonized by and by f. sp. . The increase in sink strength induced by ectopic expression of in roots could be abolished by shoot excision which reverted also the increased colonization levels by the symbiotic fungus. Altogether, these results suggest that AM fungi and spp. might induce to increase the sink strength and thus this gene might represent a common susceptibility target for root colonizing fungi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987980PMC
http://dx.doi.org/10.3389/fpls.2022.837231DOI Listing

Publication Analysis

Top Keywords

root colonization
16
sink strength
16
overexpression potato
8
colonization symbiotic
8
symbiotic pathogenic
8
pathogenic fungi
8
transcriptional reprogramming
8
sugar transporters
8
fungus induces
8
increase sink
8

Similar Publications

Jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.

View Article and Find Full Text PDF

Outbreak of carbapenem resistant Klebsiella pneumoniae in a neurorehabilitation unit: genomic epidemiology reveals complex transmission pattern in a tertiary care hospital.

J Glob Antimicrob Resist

January 2025

Microbiology Unit, Clinical Pathology Department, Piacenza General Hospital, Piacenza, Italy; Medicine and Surgery Department, University of Parma, Parma, Italy.

Objectives: Infections by Carbapenem-Resistant Enterobacterales in hospitals represent a severe threat but little is known on outbreaks in rehabilitation wards caused by Klebsiella pneumoniae producing Klebsiella pneumoniae Carbapenemase (KPC-Kp). We report an outbreak by KPC-Kp, in a Neurorehabilitation Unit in Italy, analysed through Whole-Genome Sequencing (WGS) for transmission routes reconstruction to improve management of KPC-Kp infections in rehabilitation units.

Methods: We investigated cases and KPC-Kp isolates collected from February to October 2022 from hospital surveillance.

View Article and Find Full Text PDF

Trichoderma virens XZ11-1 producing siderophores inhibits the infection of Fusarium oxysporum and promotes plant growth in banana plants.

Microb Cell Fact

January 2025

School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.

Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.

View Article and Find Full Text PDF

Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.

View Article and Find Full Text PDF

Wheat and barley serve as significant nutrient-rich staples that are extensively grown on a global scale, spanning over 219 million hectares. The annual combined global yield is 760.9 million tons, with Kazakhstan contributing 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!