Regulation of Phytohormones on the Growth and Development of Plant Root Hair.

Front Plant Sci

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.

Published: March 2022

The tubular-shaped unicellular extensions of plant epidermal cells known as root hairs are important components of plant roots and play crucial roles in absorbing nutrients and water and in responding to stress. The growth and development of root hair include, mainly, fate determination of root hair cells, root hair initiation, and root hair elongation. Phytohormones play important regulatory roles as signal molecules in the growth and development of root hair. In this review, we describe the regulatory roles of auxin, ethylene (ETH), jasmonate (JA), abscisic acid (ABA), gibberellin (GA), strigolactone (SL), cytokinin (CK), and brassinosteroid (BR) in the growth and development of plant root hairs. Auxin, ETH, and CK play positive regulation while BR plays negative regulation in the fate determination of root hair cells; Auxin, ETH, JA, CK, and ABA play positive regulation while BR plays negative regulation in the root hair initiation; Auxin, ETH, CK, and JA play positive regulation while BR, GA, and ABA play negative regulation in the root hair elongation. Phytohormones regulate root hair growth and development mainly by regulating transcription of root hair associated genes, including (), (), (), and (). Auxin and ETH play vital roles in this regulation, with JA, ABA, SL, and BR interacting with auxin and ETH to regulate further the growth and development of root hairs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988291PMC
http://dx.doi.org/10.3389/fpls.2022.865302DOI Listing

Publication Analysis

Top Keywords

root hair
44
growth development
24
auxin eth
20
root
14
root hairs
12
development root
12
eth play
12
play positive
12
positive regulation
12
negative regulation
12

Similar Publications

Vitamin D is essential for healthy skeletal growth and is increasingly recognised for its role in chronic disease development, inflammation and immunity. 25-hydroxyvitamin D (25(OH)D) concentrations are an indicator of vitamin D status and are normally analysed in plasma or serum samples in clinical settings, while archaeological studies rely on the identification of skeletal markers of vitamin D deficiency, such as rickets. Here, we determined 25(OH)D concentrations in hair specimens ('locks') that had been sampled close to the root, aligned by cut end, and sliced into sequential segments from participants (n = 16), from Aberdeen, Scotland, using a modified protocol designed to minimise sample size.

View Article and Find Full Text PDF

BcWRKY25-BcWRKY33A-BcLRP1/BcCOW1 module promotes root development for improved salt tolerance in Bok choy.

Hortic Res

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, No.1 Weigang Road, Xuanwu District, Nanjing 210095, China.

Root development is a complex process involving phytohormones and transcription factors. Our previous research has demonstrated that is significantly expressed in Bok choy roots under salt stress, and heterologous expression of increases salt tolerance and promotes root development in transgenic . However, the precise molecular mechanisms by which BcWRKY33A governs root development remain elusive.

View Article and Find Full Text PDF

Spider Fungi: New species of and in the aerial rhizomorph web-maker guild in Amazonia.

Fungal Syst Evol

December 2024

Programa de Pós-graduação em Botânica - DIPO 2, Instituto Nacional de Pesquisas da Amazônia - Inpa, Av. André Araújo 2936, 69067-375, Manaus, AM, Brazil.

Rhizomorphs are hair- or wire-like melanized structures with structural differentiation analogous to plant roots that help fungi spread over an area and find food resources. Some species of multiple groups of the and the produce different types of rhizomorphs. In the , the structures are largely found in , particularly in the , , and .

View Article and Find Full Text PDF

ERF114/115/109 are essential for jasmonate-repressed non-canonical JAZ8 activity in JA signaling.

Cell Rep

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Science, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Jasmonate (JA), a key plant hormone, regulates various aspects of plant development and stress responses, primarily through the degradation of canonical jasmonate-ZIM domain (JAZ) proteins by the SCF complex. While JAZ8, a non-canonical JAZ protein lacking the degron signal, has been shown to repress JA responses, the mechanism by which JA inhibits JAZ8 activity remains unclear. Here, we demonstrate that Arabidopsis ethylene response factor 114 (ERF114), ERF115, and ERF109 regulate JA signaling through interacting with JAZ8.

View Article and Find Full Text PDF

C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!