In computed tomography (CT) systems, the optimal X-ray energy in imaging depends on the material composition and the subject size. Among the parameters related to the X-ray energy, we can arbitrarily change only the tube voltage. For years, the tube voltage has often been set at 120 kVp. However, since about 2000, there has been an increasing interest in reducing radiation dose, and it has led to the publication of various reports on low tube voltage. Furthermore, with the spread of dual-energy CT, virtual monochromatic X-ray images are widely used since the contrast can be adjusted by selecting the optional energy. Therefore, because of the renewed interest in X-ray energy in CT imaging, the issue of energy and imaging needs to be summarized. In this article, we describe the basics of physical characteristics of X-ray attenuation with materials and its influence on the process of CT imaging. Moreover, the relationship between X-ray energy and CT imaging is discussed for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.6009/jjrt.2022-1238DOI Listing

Publication Analysis

Top Keywords

x-ray energy
20
energy imaging
16
tube voltage
12
x-ray
7
energy
7
imaging
5
review current
4
current knowledge
4
knowledge x-ray
4
energy practical
4

Similar Publications

Dual single-atom catalysts have attracted considerable research interest due to their higher metal atom loading and more flexible active sites compared to single-atom catalysts (SACs). We pioneered the one-step synthesis of sheets copper-cobalt graphitic carbon nitride dual single-atom (S-Cu/Co-g-C3N4) using folding fan-shaped aluminum foil as a template, and used them as catalysts in the epoxidation of styrene respectively. Through XAFS(X-ray Absorption Fine Structure) and other characterizations, it is found that Cu and Co single atoms are stabilized separately on g-C3N4 via coordination with nitrogen (N), hindered the ordered growth of sheets, and formed more pore structures, which not only increased more catalytically active sites, but also effectively prevented the flakes re-aggregate during the catalytic process.

View Article and Find Full Text PDF

Designer heterostructures have offered a very powerful strategy to create exotic superconducting states by combining magnetism and superconductivity. In this Letter, we use a heterostructure platform combining supramolecular metal complexes (SMCs) with a quasi-2D van der Waals superconductor NbSe_{2}. Our scanning tunneling microscopy measurements demonstrate the emergence of Yu-Shiba-Rusinov bands arising from the interaction between the SMC magnetism and the NbSe_{2} superconductivity.

View Article and Find Full Text PDF

Energy conservation dictates that an electron with elementary charge e traversing a vacuum gap formed by electrodes maintained at potential difference U volts acquires maximum energy of eU. In many experiments electrons with energies as high as 3eU have been observed. The experimental discovery of this effect was made over 50 years ago and is still a subject of significant controversy in applications related to x-ray generation from high voltage discharges.

View Article and Find Full Text PDF

π-Lewis Base Activation of Carbonyls and Hexafluorobenzene.

Angew Chem Int Ed Engl

December 2024

Saarland University, Coordination Chemistry, Campus C 4.1, 66123, Saarbrücken, GERMANY.

We report hitherto elusive side-on η2-bonded palladium(0) carbonyl (anthraquinone, benzaldehyde) and arene (benzene, hexa-fluorobenzene) palladium(0) complexes and present the catalytic hydrodefluorination of hexafluorobenzene by cyclohexene. The comparison with respective cyclohexene, pyridine and tetrahydrofuran complexes reveals that the experimental ligand binding strengths follow the order THF < C6H6 < C6F6 < cyclohexene < pyridine < benzaldehyde < anthraquinone. To understand this surprising order, the complexes' electronic structures were elucidated by nuclear magnetic resonance (NMR), single crystal X-Ray diffraction (sc-XRD), ultraviolet/visible (UV/Vis) electronic absorption, infrared (IR) vibrational, Pd L3-edge X-ray absorption (XAS), and X-ray photoelectron (XP) spectroscopic techniques, complemented by Density Functional Theory (DFT) calculations including energy decomposition (EDA-NOCV) and effective oxidation state (EOS) analyses.

View Article and Find Full Text PDF

Atomic Ordering-Induced Ensemble Variation in Alloys Governs Electrocatalyst On/Off States.

J Am Chem Soc

December 2024

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

The catalytic behavior of a material is influenced by ensembles─the geometric configuration of atoms on the surface. In conventional material systems, ensemble effects and the electronic structure are coupled because these strategies focus on varying the material composition, making it difficult to understand the role of ensembles in isolation. This study introduces a methodology that separates geometric effects from the electronic structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!