Spinal cord injury (SCI) is the main cause of severe damage to the central nervous system and leads to irreversible tissue loss and neurological dysfunction. Ferroptosis is a cell death pattern, newly discovered in recent years. Ferroptosis is an oxidizing cell death induced by small molecules, and is an iron-dependent process caused by the imbalance between the generation and degradation of lipid reactive oxygen species (ROS) in cells. As an antioxidant, trehalose can effectively prevent lipid peroxidation. Studies have reported that trehalose can improve the prognosis of SCI. However, it is unclear whether these benefits are related to ferroptosis. In this study, we demonstrated for the first time that trehalose reduces the degeneration and iron accumulation of neurons by inhibiting the production of ROS and ferroptosis caused by lipid peroxides after SCI, thus promoting the survival of neurons and improving the recovery of motor function. More specifically, we found that trehalose inhibited the expansion of cavities in the nerve tissue of mice with SCI, inhibited neuron loss, and improved functional recovery. In terms of mechanism, our results indicate that the neuroprotective effect of trehalose is due to the activation of the NRF2/HO-1 pathway, which in turn inhibits ferroptosis and ferroptosis-related inflammation. Our findings provide important insights into the previously unknown role of trehalose in SCI, as well as new evidence supporting the hypothesis that suppression of ferroptosis plays a key neuroprotective role in SCI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037257 | PMC |
http://dx.doi.org/10.18632/aging.204009 | DOI Listing |
FASEB J
January 2025
Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Lung cancer progression is characterized by intricate epigenetic changes that impact critical metabolic processes and cell death pathways. In this study, we investigate the role of histone lactylation at the AIM2 locus and its downstream effects on ferroptosis regulation and lung cancer progression. We utilized a combination of biochemical assays, including chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and western blotting to assess histone lactylation levels and gene expression.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
Background: Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder associated with pregnancy and is usually diagnosed based on high serum bile acid. However, the pathogenesis of ICP is unclear. Ferroptosis has been reported as an iron-dependent mechanism of cell death.
View Article and Find Full Text PDFAm J Hypertens
January 2025
Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University; Xuzhou 221004, China.
Background: Polo-like kinase 2 (PLK2) is associated with cardiac fibrosis in patients with atrial fibrillation. However, the role of PLK2 in sepsis-induced cardiac injury has not been fully elucidated. We hypothesize that PLK2 may participate in the progression of sepsis-induced cardiac injury.
View Article and Find Full Text PDFToxicon
January 2025
College of Biological Sciences and Technology, YiLi Normal University. Electronic address:
Background: Radiotherapy is essential for the management of esophageal squamous cell carcinoma (ESCC). However, ESCC cells are highly susceptible to developing resistance to radiotherapy, leading to poor prognosis. Ursolic acid (UA) is a herbal monomer, has multiple medicinal benefits like anti-tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!