A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of two thermal processing routes on protein interactions and acid gelation properties of casein micelle-pea protein mixture compared to casein micelle-whey protein one. | LitMetric

The influence of two heating protocols (protocol 1 and 2) on protein interactions and acid-induced gelation properties of casein micelle-pea protein mixture (CM-PP) was investigated and then compared to casein micelle-whey protein mixture (CM-WP). The CM:PP and CM:WP protein weight ratio for mixtures was 7.5:2.5, for a total protein content of 4% (pH 6.7). Protocol 1 consisted of a heat treatment (85 °C for 1 h) of CM-PP and CM-WP mixtures, respectively. Regarding protocol 2, casein micelle, pea protein and whey protein stock dispersions were individually pretreated by heating (85 °C for 1 h) before the mixtures were made and heated in the same conditions of protocol 1 (85 °C for 1 h). Heat pretreatment carried out in the protocol 2 significantly increased PP hydrophobicity and reinforced weak interactions of the initial pea protein particles. This pretreatment on protein stock dispersions led to twofold smaller pea protein particles compared to whey protein aggregates. The hydrophobic interactions between pea proteins and casein micelles promoted by the two heating protocols have greatly contributed to improve acid gelation functionalities of CM. Regardless of the heating protocol, acid-induced gelation of the CM-PP mixtures led to the formation of gel networks with a significant increase in stiffness and firmness compared to casein micelle or CM-WP mixtures gels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.111060DOI Listing

Publication Analysis

Top Keywords

protein
14
protein mixture
12
compared casein
12
85 °c 1 h
12
pea protein
12
protein interactions
8
acid gelation
8
gelation properties
8
properties casein
8
casein micelle-pea
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!