Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of two heating protocols (protocol 1 and 2) on protein interactions and acid-induced gelation properties of casein micelle-pea protein mixture (CM-PP) was investigated and then compared to casein micelle-whey protein mixture (CM-WP). The CM:PP and CM:WP protein weight ratio for mixtures was 7.5:2.5, for a total protein content of 4% (pH 6.7). Protocol 1 consisted of a heat treatment (85 °C for 1 h) of CM-PP and CM-WP mixtures, respectively. Regarding protocol 2, casein micelle, pea protein and whey protein stock dispersions were individually pretreated by heating (85 °C for 1 h) before the mixtures were made and heated in the same conditions of protocol 1 (85 °C for 1 h). Heat pretreatment carried out in the protocol 2 significantly increased PP hydrophobicity and reinforced weak interactions of the initial pea protein particles. This pretreatment on protein stock dispersions led to twofold smaller pea protein particles compared to whey protein aggregates. The hydrophobic interactions between pea proteins and casein micelles promoted by the two heating protocols have greatly contributed to improve acid gelation functionalities of CM. Regardless of the heating protocol, acid-induced gelation of the CM-PP mixtures led to the formation of gel networks with a significant increase in stiffness and firmness compared to casein micelle or CM-WP mixtures gels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!