Apples represent a significant source of dietary phenolic compounds with evidenced anti-inflammatory and immunomodulatory activities. Nevertheless, the effect of the whole apple matrix on human macrophages is unknown. In this context, our study attempts to evaluate the effect of apple-derived phenolic compounds-rich extracts (pulp, peel and leaf) on IL-1β production in THP-1-differentiated macrophages and derived metabolic alterations through untargeted metabolomics. Our results have showed that apple pulp treatment inhibited the release of the pro-inflammatory cytokine IL-1β induced by LPS in THP-1 macrophages by ELISA analysis. Metabolomics demonstrate that different proportions of phenolic compounds led to differential alterations in the metabolism of THP-1 macrophages. Indeed, apple extracts promoted alterations in lipid, carbohydrate, amino acid and vitamins as well as cofactors metabolism. Specifically, leaf extracts were characterized by alteration of galactose metabolism while the extracts derived from the fruit showed predominant alterations in lipids metabolism. All extracts mimicked the response observed under normal conditions in LPS-stimulated macrophages, inhibiting LPS response. Thus, the phenolic enriched extracts from apples will be a good source of natural compounds with a beneficial effect against inflammation, and they may be applied as a food supplement and/or functional ingredient for the treatment of inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111037 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.
Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.
View Article and Find Full Text PDFNat Prod Res
January 2025
Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.
View Article and Find Full Text PDFViruses
December 2024
Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.
This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
This study explores the development of electrospun nanofibers incorporating bioactive compounds from (Ashwagandha) root extract, focusing on optimizing extraction conditions and nanofiber composition to maximize biological activity and application potential. Using the Design of Experiment (DoE) approach, optimal extraction parameters were identified as 80% methanol, 70 °C, and 60 min, yielding high levels of phenolic compounds and antioxidant activity. Methanol concentration emerged as the critical factor influencing phytochemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!