Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota.

Food Res Int

Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

Published: May 2022

AI Article Synopsis

  • * GOS improved the integrity of the intestinal villi and increased expression of tight junction proteins, while also boosting mucin and secretory IgA production to help alleviate inflammation.
  • * Additionally, GOS positively influenced the balance of beneficial gut bacteria, enhancing the overall adaptability of the intestinal microbiome in response to stress from LPS exposure.

Article Abstract

Present study was conducted to comprehensively investigate the protective effects of galactooligosaccharides (GOS, 100%) against LPS-induced intestinal barrier damages, and the regulatory effect for intestinal microbes. Results showed that GOS intervention restored villi (jejunum and ileum) integrity, which were atrophic and broken in LPS-challenged mice. Electron microscopy, western blotting and immunofluorescence analysis exhibited that mice administrated with GOS showed higher expression of tight junction, which was confirmed in IPEC-J2 cells model. Meanwhile, the GOS increased the secretion of mucin and SIgA, as well as it alleviated inflammatory response caused by LPS in NF-κB dependent way. Administration of GOS could also increase the relative abundances of several specific friendly bacteria, and enhance the adaptability of intestinal microbiota. Collectively, these results indicated the potential of GOS for protecting intestine from injuries caused by stress as LPS challenge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.111003DOI Listing

Publication Analysis

Top Keywords

intestinal barrier
8
intestinal microbiota
8
gos
6
intestinal
5
galactooligosaccharides protective
4
protective agent
4
agent intestinal
4
barrier regulatory
4
regulatory functions
4
functions intestinal
4

Similar Publications

Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.

View Article and Find Full Text PDF

Vitamin B, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B is crucial to overcoming these challenges.

View Article and Find Full Text PDF

This study aimed to investigate the protective effects of Lycium barbarum polysaccharide (LBP) on digestive function and intestinal barrier integrity in septic mice, and to explore its underlying mechanisms. A total of 70 healthy male BALB/C mice were randomly assigned into five groups: blank control group (BG, n = 12), control group (CG, n = 12), low-dose group (LDG, n = 12, 200 mg/kg), medium-dose group (MDG, n = 12, 400 mg/kg), and high-dose group (HDG, n = 12, 800 mg/kg). A sepsis model was established by cecal ligation and puncture, followed by treatment with different doses of LBP.

View Article and Find Full Text PDF

The high-altitude, low-pressure, and hypoxia environment poses a significant threat to human health, particularly causing intestinal damage and disrupting gut microbiota. This study investigates the protective effects of Brassica rapa L. crude polysaccharides (BRP) on intestinal damage in mice exposed to hypobaric hypoxic conditions.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract is susceptible to damage under high altitude hypoxic conditions, leading to gastrointestinal discomfort and intestinal barrier injury. Sodium butyrate, a short-chain fatty acid present as a metabolite in the gut, has emerged as a promising therapeutic agent due to its ability to act as an immunomodulatory agent and restore intestinal barrier integrity. This study aimed to explore the mechanism by which sodium butyrate exhibits anti inflammatory effect on intestinal epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!