Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, foodomics approach was employed to investigate changes in the metabolism from the volatile terpenoids profile of mint(Mentha × gracillis Sole)from conventional, organic and permaculture (a type of agroecological agriculture system) farms using headspace solid-phase microextraction (HS-SPME) associated to gas chromatography coupled to mass spectrometry (GC-MS) and chemometric tools. The discrimination among the three types of mint was successfully achieved and demonstrated evidence of ecological interaction impact in the food metabolism. The agroecological mint presented as differential compounds: α-terpineol, bornyl formate, cis-carvyl propionate, cis-carveol, camphor, dihydrocarvyl acetate, dihydrocarveol, karahanaenone, nonanal, 3-octyl acetate, and trans-3-hexenyl-2 methylbutyrate. While organic and conventional mint presented as differential compounds: α-cedrene, β -pinene, γ-muurolene, δ-cadinene, germacrene, terpinolene, and elemol. The majority of differential metabolites from agroecological mint are oxygenated monoterpenes, which have more intense flavor and biological activities than hydrocarbons monoterpenes and sesquiterpenes found in organic and conventional mint. Furthermore, the discrimination between organic and conventional mint was effectively performed, which demonstrated different terpenoid profiles though without implying benefits for one or another agriculture system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!