Central nervous system (CNS) inflammation is a common cause of neurological dysfunction in dogs. Most dogs with CNS inflammation are diagnosed with presumptive autoimmune disease. A smaller number are diagnosed with an infectious etiology. Additionally, at necropsy, a subset of dogs with CNS inflammation do not fit previously described patterns of autoimmune disease and an infectious cause is not readily identifiable. Because viral infection is a common cause of meningoencephalitis in people, we hypothesize that a subset of dogs presented with CNS inflammation have an occult viral infection either as a direct cause of CNS inflammation or a trigger for autoimmunity. The goal of this research was to screen cerebrospinal fluid from a large number dogs with CNS inflammation for occult viral infection. One hundred seventy-two dogs with neurological dysfunction and cerebrospinal fluid (CSF) pleocytosis were identified. Of these, 42 had meningoencephalitis of unknown origin, six had steroid-responsive meningitis-arteritis, one had eosinophilic meningoencephalitis, five had documented infection, 21 had and undetermined diagnosis, and 97 had a diagnosis not consistent with primary inflammatory disease of the CNS (e.g., neoplasia). CSF samples were subsequently screened with broadly reactive PCR for eight viral groups: adenovirus, bunyavirus, coronavirus, enterovirus, flavivirus, herpesvirus, paramyxovirus, and parechovirus. No viral nucleic acids were detected from 168 cases screened for eight viral groups, which does not support occult viral infection as a cause of CNS inflammation in dogs. La Crosse virus (LACV) nucleic acids were detected from four cases in Georgia. Subclinical infection was supported in two of these cases but LACV could not be ruled-out as a cause of infection in the other two cases, suggesting further research is warranted to determine if LACV is an occult cause of CNS inflammation in dogs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987525 | PMC |
http://dx.doi.org/10.3389/fvets.2022.850510 | DOI Listing |
Neuron
January 2025
Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address:
The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Gothenburg, Sweden.
Background: The research on Alzheimer's disease (AD) has substantially advanced in relation to plasma biomarkers, such as pTau217, for the detection of amyloid (Aβ) pathology which identify, with high accuracy, individuals in the AD biological continuum. However, as these biomarkers become abnormal very early in the disease, biomarkers identifying more advanced disease stages and proxying pathophysiological processes beyond amyloidosis are still needed. Therefore, we have conducted a proteomic study, on plasma and CSF, aiming at identifying proteins reflecting pathological changes in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
Background: COVID-19, identified as the greatest health concern of the century, is associated with vascular inflammation and endothelial activation, resulting in multisystemic damage, including to the central nervous system (CNS). Recent investigations indicate a link between endothelial dysfunction, neurological changes, and the development of the so-called long-COVID. Molecules expressed in the endothelium such as P-selectin, E-selectin, and VEGF-A, increased under inflammatory injury, may be associated with conditions like brain injuries and neurodegenerative diseases.
View Article and Find Full Text PDFBackground: One hypothesis of lack of effectiveness in most current clinical trials for the AD (Alzheimer's disease) is the advanced stages of the disease at the time of pharmacological intervention. To aim a robust effect from disease-modifying therapies, there is an urgent need for biomarkers that can identify patients with MCI and early stages of AD. In this study, we combined in-house large-scale LC-MS and new emerging highly sensitive NULISA proteomics analysis on a medium sized AD cohort sample, aiming an early-stage protein biomarker discovery in MCI and AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.
Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!