The GGIP web server (https://protein.b.dendai.ac.jp/GGIP/) provides a web application for GPCR-GPCR interaction pair prediction by a support vector machine. The server accepts two sequences in the FASTA format. It responds with a prediction that the input GPCR sequence pair either interacts or not. GPCRs predicted to interact with the monomers constituting the pair are also shown when query sequences are human GPCRs. The server is simple to use. A pair of amino acid sequences in the FASTA format is pasted into the text area, a PDB ID for a template structure is selected, and then the 'Execute' button is clicked. The server quickly responds with a prediction result. The major advantage of this server is that it employs the GGIP software, which is presently the only method for predicting GPCR-interaction pairs. Our web server is freely available with no login requirement. In this article, we introduce some application examples of GGIP for disease-associated mutation analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8989088 | PMC |
http://dx.doi.org/10.3389/fendo.2022.825195 | DOI Listing |
NAR Genom Bioinform
March 2025
Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
σ serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ promoters and regulon in bacterial genomes.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Institute for Bioinformatics and Medical Informatics (IBMI), University of Tuebingen, Sand 14, 72076 Tubingen, Germany.
Recent improvements in methods and instruments used in mass spectrometry have greatly enhanced the detection of protein post-translational modifications (PTMs). On the computational side, the adoption of open modification search strategies now allows for the identification of a wide variety of PTMs, potentially revealing hundreds to thousands of distinct modifications in biological samples. While the observable part of the proteome is continuously growing, the visualization and interpretation of this vast amount of data in a comprehensive fashion is not yet possible.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Australian Urban Research Infrastructure Network (AURIN), University of Melbourne, Melbourne, VIC 3052, Australia.
Public transportation systems play a vital role in modern cities, but they face growing security challenges, particularly related to incidents of violence. Detecting and responding to violence in real time is crucial for ensuring passenger safety and the smooth operation of these transport networks. To address this issue, we propose an advanced artificial intelligence (AI) solution for identifying unsafe behaviours in public transport.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the large coronavirus family with high infectivity and pathogenicity and is the primary pathogen causing the global pandemic of coronavirus disease 2019 (COVID-19). Phosphorylation is a major type of protein post-translational modification that plays an essential role in the process of SARS-CoV-2-host interactions. The precise identification of phosphorylation sites in host cells infected with SARS-CoV-2 will be of great importance to investigate potential antiviral responses and mechanisms and exploit novel targets for therapeutic development.
View Article and Find Full Text PDFThe ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!