Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polymer dielectric capacitors are widely utilized in pulse power devices owing to their high power density. Because of the low dielectric constants of pure polymers, inorganic fillers are needed to improve their properties. The size and dielectric properties of fillers will affect the dielectric breakdown of polymer-based composites. However, the effect of fillers on breakdown strength cannot be completely obtained through experiments alone. In this paper, three of the most important variables affecting the breakdown strength of polymer-based composites are considered: the filler dielectric constants, filler sizes, and filler contents. High-throughput stochastic breakdown simulation is performed on 504 groups of data, and the simulation results are used as the machine learning database to obtain the breakdown strength prediction of polymer-based composites. Combined with the classical dielectric prediction formula, the energy storage density prediction of polymer-based composites is obtained. The accuracy of the prediction is verified by the directional experiments, including dielectric constant and breakdown strength. This work provides insight into the design and fabrication of polymer-based composites with high energy density for capacitive energy storage applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189649 | PMC |
http://dx.doi.org/10.1002/advs.202105773 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!