Short-wave infrared (SWIR) image sensors based on colloidal quantum dots (QDs) are characterized by low cost, small pixel pitch, and spectral tunability. Adoption of QD-SWIR imagers is, however, hampered by a reliance on restricted elements such as Pb and Hg. Here, QD photodiodes, the central element of a QD image sensor, made from non-restricted In(As,P) QDs that operate at wavelengths up to 1400 nm are demonstrated. Three different In(As,P) QD batches that are made using a scalable, one-size-one-batch reaction and feature a band-edge absorption at 1140, 1270, and 1400 nm are implemented. These QDs are post-processed to obtain In(As,P) nanocolloids stabilized by short-chain ligands, from which semiconducting films of n-In(As,P) are formed through spincoating. For all three sizes, sandwiching such films between p-NiO as the hole transport layer and Nb:TiO as the electron transport layer yields In(As,P) QD photodiodes that exhibit best internal quantum efficiencies at the QD band gap of 46±5% and are sensitive for SWIR light up to 1400 nm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189642 | PMC |
http://dx.doi.org/10.1002/advs.202200844 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!