Crop year, harvest date and clone effects on fruit characteristics, chemical composition and olive oil stability from an Empeltre clonal selection grown in Aragon.

J Sci Food Agric

Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón - IA2, Zaragoza, Spain.

Published: October 2022

Background: In this study, the effects of crop year, harvest date and clone on the fruit characteristics and chemical composition of Empeltre olive oils were evaluated. For this purpose, the weight and oil content of fruit and the fatty acid composition, polyphenol content and oxidative stability of the olive oil was analysed throughout ripening during three successive seasons.

Results: The weight and moisture in the fruit, as well as the fatty acids and polyphenol content in the olive oil, were mainly affected by crop year. In contrast, the stability was strongly influenced by the harvest date. Both factors had an influence on the fruit's oil content. The clone was not a substantial component in terms of variability, although the interaction with crop year was notable for some of the characteristics. The oil content increased significantly along with the harvest date and reached maximum values in the last period (44.9%). Conversely, stability and polyphenols decreased significantly (depending on the year, by 30-70%) from October to December, reaching the highest mean values between 1 October and 10 November (15.5 h; 500 mg caffeic acid kg ). Oleic acid and monounsaturated/polyunsaturated fatty acids (MUFA/PUFA) did not show significant differences depending on the harvest date, but between years, with 2018 having the highest percentage of oleic acid (72.72%) and MUFA/PUFA (8.38).

Conclusion: Early harvesting of Empeltre olives would provide considerably more stable olive oils, regardless of the clone selected, with higher phenolic content. It would not affect the MUFA/PUFA ratio, mainly influenced by the crop year. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541516PMC
http://dx.doi.org/10.1002/jsfa.11927DOI Listing

Publication Analysis

Top Keywords

crop year
20
olive oil
12
oil content
12
year harvest
8
harvest clone
8
fruit characteristics
8
characteristics chemical
8
chemical composition
8
olive oils
8
polyphenol content
8

Similar Publications

Effect of variation in gridded cattle diet composition on estimated enteric methane emissions in data sparse tropical regions.

Animal

December 2024

School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom; Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, United Kingdom.

Livestock directly contribute to greenhouse gas emissions, mainly through enteric fermentation and to a lesser extent manure management. Livestock feed composition plays a crucial role in diet quality and the resulting emissions from livestock. Diet composition varies seasonally particularly in tropical environments with long dry periods.

View Article and Find Full Text PDF

The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.

View Article and Find Full Text PDF

Fertilizing maize at an optimum nitrogen rate is imperative to maximize productivity and sustainability. Using a combination of long-term (n = 379) and short-term (n = 176) experiments, we show that the economic optimum nitrogen rate for US maize production has increased by 2.7 kg N ha yr from 1991 to 2021 (1.

View Article and Find Full Text PDF

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

First Report of Causing Root Rot of Incense Cedar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!