Background: Assessing relatedness of pathogen sequences in clinical samples is a core goal in molecular epidemiology. Tools for Bayesian analysis of phylogeny, such as the BEAST software package, have been typically used in the analysis of sequence/time data in public health. However, they are computationally-, time-, and knowledge-intensive, demanding resources that many laboratories do not have available or cannot allocate frequently.
Methods: To evaluate a faster and simpler alternative method to support the routine interpretation of sequence data for epidemiology, we obtained sequences for two regions in the measles virus genome, N-450 and MF-NCR, from patient samples of genotypes B3, D4 and D8 taken between 2011 and 2017 in the UK and Romania. A mathematical model incorporating time, possible shared ancestry and the Poisson distribution describing the number of expected substitutions at a given time point was developed to exclude epidemiological relatedness between pairs of sequences. The model was validated against the commonly used Bayesian phylogenetic method using an independent dataset collected in 2017-19.
Findings: We demonstrate that our model, using time and sequence information to predict whether two samples may be related within a given time frame, minimises the risk of erroneous exclusion of relatedness. An easy-to-use implementation in the form of a guide and spreadsheet is provided for convenient application.
Interpretation: The proposed model only requires a previously calculated substitution rate for the locus and pathogen of interest. It allows for an informed but quick decision on the likelihood of relatedness between two samples within a time frame, without the need for phylogenetic reconstruction, thus facilitating rapid epidemiological interpretation of sequence data.
Funding: This work was funded by the United Kingdom Health Security Agency (UKHSA). The World Health Organization European Regional Office funded Aurora Fernández-García and Mihaela Lazar training visits to UKHSA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006250 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2022.103989 | DOI Listing |
Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, People's Republic of China.
Benign prostatic hyperplasia (BPH) is a prevalent urinary system disorder. Despite evidence of a significant genetic component from previous studies, the specific pathogenic genes and biological mechanisms are still largely unknown. The study utilized the FinnGen R10 dataset, encompassing 177,901 individuals (36,601 cases and 141,300 controls), and the GTEx v8 EQTLs files to conduct single-tissue and cross-tissue transcriptome-wide association studies (TWAS).
View Article and Find Full Text PDFSci Rep
January 2025
Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.
Previous studies have found that dyslipidemia is a risk factor for pancreatic cancer (PC), and that lipid-lowering drugs may reduce the risk of PC. However, it is not clear whether dyslipidemia causes PC. The Mendelian randomization (MR) study aimed to investigate the causal role of lipid traits in pancreatic cancer and to assess the potential impact of lipid-lowering drug targets on pancreatic cancer.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
The incidence of digestive system diseases is high. So digestive system pathology is widely concerned. In the past 10 years, Chinese pathologists insist on hard work and have made significant progress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!