As synaptic vesicles fuse, they must continually be replaced with new docked, fusion-competent vesicles to sustain neurotransmission. It has long been appreciated that vesicles are recruited to docking sites in an activity-dependent manner. However, once entering the sites, vesicles were thought to be stably docked, awaiting calcium signals. Based on recent data from electrophysiology, electron microscopy, biochemistry, and computer simulations, a picture emerges in which vesicles can rapidly and reversibly transit between docking and undocking during activity. This "transient docking" can account for many aspects of synaptic physiology. In this review, we cover recent evidence for transient docking, physiological processes at the synapse that it may support, and progress on the underlying mechanisms. We also discuss an open question: what determines for how long and whether vesicles stay docked, or eventually undock?
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167714 | PMC |
http://dx.doi.org/10.1016/j.conb.2022.102535 | DOI Listing |
Eur J Pharmacol
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.
View Article and Find Full Text PDFGene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.
View Article and Find Full Text PDFMolecules
December 2024
Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
Transient receptor potential vanilloid (TRPV) 4 is involved in signaling pathways specifically mediating pain and inflammation, making it a promising target for the treatment of various painful and inflammatory conditions. However, only one drug candidate targeting TRPV4 has entered the clinical trials. To identify potential TRPV4 inhibitors for drug development, we screened a library of ion channel-modulating compounds using both structure- and ligand-based virtual screening approaches.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, China.
Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania.
Development of cocrystals through crystal engineering is a viable strategy to formulate poorly water-soluble active pharmaceutical ingredients as stable crystalline solid forms with enhanced bioavailability. This study presents a controlled cocrystallization process by cooling for the 1:1 cocrystal of Ketoconazole, an antifungal class II drug with the Fumaric acid coformer. This was successfully set up following the meta-stable zone width determination in acetone-water 4:6 (/) and pure ethanol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!