A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanog suppression enhanced the chemosensitivity of human non-small-cell lung cancer cells to Cisplatin and inhibited cell migration. | LitMetric

Lung cancer is the leading cause of cancer-associated death in the world. As one of the leading transcription factors in controlling stemness features, Nanog was shown to promote cancer progression, metastasis, and drug resistance. Considering that, this research was conducted to evaluate the effect of Nanog suppression using specific siRNA on the chemosensitivity of lung cancer cells to Cisplatin through inhibition of cell proliferation, migration, and stemness as well as apoptosis induction. Then, A549 lung cancer cells were transfected with Nanog siRNA and treated with Cisplatin individually or combined. Subsequently, to investigate cell proliferation and apoptosis induction, MTT assay and Annexin V/PI staining were performed, respectively. Also, colony formation assay was carried out to evaluate cell stemness features, and migration ability of A549 cells was followed using a wound-healing assay. Gene expression was quantified via qRT-PCR. The obtained results illustrated that siRNA-mediated Nanog suppression remarkably increased the chemosensitivity of A549 cells to Cisplatin through apoptosis induction. Consistently, Nanog suppression combined with Cisplatin led to upregulation of Caspase-3 apoptotic gene and Bax/Bcl-2 ratio. Besides, Nanog knockdown, individually or combined with Cisplatin, prevented colony formation ability of A549 cells by downregulating Sox2 and CD44 genes. It was also indicated that the combination therapy remarkably downregulated MMP9 expression and subsequently suppressed A549 cell migration. A significant reduction was also observed in c-Myc and PD-L1 gene expression levels. In conclusion, the findings of the current study demonstrated that silencing Nanog combined with Cisplatin could be a potent treatment approach for lung cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2022.153869DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
nanog suppression
16
cancer cells
12
cells cisplatin
12
apoptosis induction
12
a549 cells
12
combined cisplatin
12
nanog
8
cell migration
8
stemness features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!