Diabetes mellitus induces neuropsychiatric comorbidities at an early stage, which can be ameliorated by exercise. However, the neurobiological mechanisms underlying this ameliorative effect remain unclear. The present study was conducted in Otsuka Long-Evans Tokushima fatty (OLETF) rats, which develop diabetes with age, and aimed to investigate whether social and anxiety-like behaviors and neurobiological changes associated with these behavioral phenotypes were reversed by voluntary exercise and whether those were maintained in the later stage. We investigated the effects of exercise at different diabetic stages in OLETF rats by comparing with control rats. Three groups of OLETF rats were used: sedentary rats, rats exercising on a wheel for two weeks at 4-5 weeks of age (early voluntary exercise), and those exercising at 10-11 weeks of age (late voluntary exercise). In the elevated plus-maze test, both early and late voluntary exercises did not affect anxiety-like behavior. In the social interaction tests, both early and late voluntary exercises ameliorated impaired sociability, novel exploration deficits, and hypoactivity in OLETF rats. Both early and late voluntary exercises reversed the increases in cholecystokinin-positive neuron densities in the infralimbic cortex and hippocampal cornu ammonis area 3 in the OLETF rats, although they did not affect the area-reduction in the medial prefrontal cortex and the increase in cholecystokinin-positive neuron densities in the basolateral amygdala. These suggest that voluntary exercise has therapeutic effects on impaired sociability and novel exploration deficits associated with cholecystokinin-positive neurons in specific corticolimbic regions in OLETF rats, and those are maintained after early exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2022.113886 | DOI Listing |
Int J Mol Sci
October 2024
Department of Public Health, Kagawa University Faculty of Medicine, Kagawa 761-0793, Japan.
, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects of NBF2, a formula made of algal and -derived biomaterials, on obesity and type 2 diabetes (T2DM).
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan.
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and , have garnered attention for their potential in obesity prevention.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea.
Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes.
View Article and Find Full Text PDFPLoS One
September 2024
Department of Urology, Faculty of Medical Science, University of Fukui, Fukui, Japan.
Purpose: Bladder dysfunction associated with type 2 diabetes mellitus (T2DM) includes urine storage and voiding disorders. We examined pathological conditions of the bladder wall in a rat T2DM model and evaluated the effects of the phosphodiesterase-5 (PDE-5) inhibitor tadalafil.
Materials And Methods: Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats and Long-Evans Tokushima Otsuka (LETO) rats were used as the T2DM and control groups, respectively.
J Nutr Sci Vitaminol (Tokyo)
September 2024
Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University.
Chronic inflammation in adipose tissue is thought to contribute to insulin resistance, which involves the gut microbiota. Our previous studies have demonstrated that ingestion of 1-kestose can alter the gut microbiota composition, increase cecal butyrate levels, and improve insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Additionally, we found that 1-kestose supplementation ameliorated insulin resistance in obese rat models fed a high-fat diet (HFD), although the effects of 1-kestose on the abundance of inflammation-related gene in adipose tissue and gut microbiota composition in these rats were not explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!