Substantial evidence suggests a widespread increase in global vegetation gross primary production (GPP) since the 1980s. If the increasing trend of GPP remains unchanged in the future, it is considered to be the persistence of increasing GPP. However, it is still unknown whether the vegetation increasing GPP is persistent under the interactive effects of climate change and land use changes in Northwest China. Using the Mann-Kendall and boosted regression tree models, we constructed the relationship between the increasing GPP and environmental variables, and further explored its persistence under the interactions between climate change and land use changes under SSP245 and SSP585 scenarios. The results indicated that: (1) Land use change (8.01%) was the most important variable for the increasing GPP. The surface net solar radiation (6.79%), and maximum temperature of the warmest month (6.78%) were also very important. Moreover, mean temperature of the warmest quarter had strong interactions with mean precipitation of the warmest quarter (9.82%) and land use change (8.24%). (2) Under the SSP245 scenario, the persistence of increasing GPP accounted for 65.06% of the area in 2100, mainly located in Qinghai, Ningxia, and Shaanxi, while it only accounted for 19.50% under the SSP585 scenario. (3) The SSP245 scenario moderate warming leads to a slight ecosystem benefit, with more areas developing an increase in GPP due to climate and land use change factors. On the other hand, under SSP585 scenario, there are widespread losses of increasing GPP, driven largely by climate change, while ecological engineering is conducive to the persistence of increasing GPP in southern Qinghai. The results highlight the importance of the interactive effects of climate change and land use changes for predicting the persistence of vegetation change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155086 | DOI Listing |
J Psoriasis Psoriatic Arthritis
January 2025
Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA.
Background: Generalized pustular psoriasis (GPP) is a rare, chronic, often unpredictable, severe multisystemic autoinflammatory skin disease from which patients can experience flares, episodes of widespread eruptions of painful, sterile pustules often accompanied by systemic symptoms. The impact of GPP flares and underlying GPP severity on the healthcare resource utilization (HCRU) is not well characterized.
Objective: To quantify HCRU among US GPP patients by flare status and underlying severity.
Curr Issues Mol Biol
January 2025
Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China.
Terpenes are critical components of the floral fragrance component in , synthesized by terpene synthase (TPS). Analysis of the genome and transcriptional data revealed that the gene was significantly up-regulated during flowering periods, showing a strong correlation with the accumulation of aromatic monoterpenes in the floral components of . Consequently, the gene was selected for further analysis.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia.
The expression profile of the key genes of biosynthesis (VTC2, GPP, GalDH, and GalLDH) and recycling (MDHAR1, MDHAR4, and MDHAR5) of ascorbate in response to infection with the fungal pathogen Fusarium proliferatum in garlic cultivars resistant (Podnebesny) and sensitive (Dubkovsky) to Fusarium rot was determined. It was found that differences in resistance to Fusarium lead to discrepancies in the dynamics and expression of individual genes of the ascorbate pathway, as well as in the ascorbate content. It was shown that, in response to infection, the expression level of the MDHAR4 gene increases in the resistant cultivar and decreases in the Fusarium-sensitive accession.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
Introduction: Coronavirus disease 2019 (COVID-19) is characterized by fever, fatigue, dry cough, dyspnea, mild pneumonia and acute lung injury (ALI), which can lead to acute respiratory distress syndrome (ARDS), and SARS-CoV-2 can accelerate tumor progression. However, the molecular mechanism for the increased mortality in cancer patients infected with COVID-19 is unclear.
Methods: Colony formation and wound healing assays were performed on Huh-7 cells cocultured with syncytia.
Sci Total Environ
January 2025
Department of Forest Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.
Peatlands are key ecosystems for global climate regulation because they provide the most efficient carbon sink on the planet. Despite this, they have been widely degraded by various anthropogenic disturbances, causing imbalances in their ecological functioning. A more recent type of disturbance corresponds to the commercial extraction of Sphagnum mosses, which has been carried out in temperate peatlands distributed in Australasia and Patagonia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!