Pharmacologic enrichment of exosome yields and mitochondrial cargo.

Mitochondrion

Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA; University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA. Electronic address:

Published: May 2022

In studies with human participants, exosome-based biospecimens can facilitate unique biomarker assessments. As exosome cargos can include mitochondrial components, there is interest in using exosomes to inform the status of an individual's mitochondria. Here, we evaluated whether targeted pharmacologic manipulations could influence the quantity of exosomes shed by cells, and whether these manipulations could impact their mitochondrial cargos. We treated human SH-SY5Y cells with bafilomycin A1, which interferes with general autophagy and mitophagy by inhibiting lysosome acidification and lysosome-autophagosome fusion; deferiprone (DFP), which enhances receptor-mediated mitophagy; or both. Exosome fractions from treated cells were harvested from the cell medium and analyzed for content including mitochondria-derived components. We found bafilomycin increased particle yields, and a combination of bafilomycin plus DFP consistently increased particle yields and mitochondria-associated content. Specifically, the exosome fractions from the bafilomycin plus DFP-treated cells contained more mitochondrial DNA (mtDNA), mtDNA-derived mRNA transcripts, and citrate synthase protein. Our data suggest pharmacologic manipulations that enhance mitophagy initiation, while inhibiting the lysosomal digestion of autophagosomes and multivesicular bodies, could potentially enhance the sensitivity of exosome-based biomarker assays intended to inform the status of an individual's mitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035121PMC
http://dx.doi.org/10.1016/j.mito.2022.04.001DOI Listing

Publication Analysis

Top Keywords

inform status
8
status individual's
8
individual's mitochondria
8
pharmacologic manipulations
8
exosome fractions
8
increased particle
8
particle yields
8
pharmacologic enrichment
4
exosome
4
enrichment exosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!