Emerging contaminants (ECs) and heavy metals (HMs) are universally present together in estuarine sediments; despite this, their effects on microbial communities have been widely studied separately, rather than in consort. In this study, the combined effects of ECs and HMs on microbial communities were investigated in sediments from 11 major river estuaries around the Bohai Sea, China. Proteobacteria, Bacteroidetes, and Firmicutes were the dominant phyla in the sediments. Using Shannon indices, total phosphorus and total organic carbon were shown to affect microbial community structure. Redundancy analysis of microbial variation implicated Cd and As as the greatest pollutants, followed by Mn, Fe, Zn and Cu; no impacts from galaxolide (HHCB) and tonalide (AHTN) were found. Correlation analysis demonstrated that the concentration of ECs increased the abundance of certain bacteria (e.g., Haliangium, Altererythrobacter, Gaiella and Erythrobacter), and therefore these can be used as potential contamination indicators. Shannon indices and Chao1 indices showed that there were differences in the richness and diversity of bacterial communities in the sediments of 11 rivers. The principal coordinate analysis displayed higher similarity of bacterial community composition in estuarine sediments in Liaoning province than other regions. The results can be used to predict changes in estuary ecosystems to maintain their ecological balance and health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155118 | DOI Listing |
J Environ Qual
January 2025
Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Federal Institute of Maranhão, Campus Barreirinhas, Rodovia MA-225, KM 04, CEP:65590-000, Barreirinhas, Maranhão, Brazil.
Dredging in estuarine systems significantly impacts phytoplankton communities, with suspended particulate matter (SPM) and dissolved aluminum (Al) serving as indicators of disturbance intensity. This study assessed the effects of dredging in the São Marcos Estuarine Complex (SMEC), Brazil, over three distinct events (2015, 2017, 2020), involving varying sediment volumes and climatic influences. Prolonged dredging operations and increased sediment volumes led to a pronounced 43.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China.
The contamination of groundwater with geogenic ammonium (NH) across various geological backgrounds has garnered significant attention, particularly in coastal aquifer systems. However, there remains a gap in our understanding of the mechanisms governing the spatial variability of NH in coastal groundwater at a macroscopic scale. In this study, we collected the sediment samples from two boreholes corresponding to high-NH-N and low-NH-N groundwater.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China. Electronic address:
Despite growing attention to the environmental pollution caused by tire wear particles (TWPs), the effects of pristine and photoaged TWPs (P-TWPs and A-TWPs) and their TWP leachates (TWPLs; P-TWPL and A-TWPL) on key nitrogen removal processes in estuarine sediments remain unclear. This study explores the responses of the denitrification rate, anammox rate, and nitrous oxide (NO) accumulation to P-TWP, A-TWP, P-TWPL, and A-TWPL exposure in estuarine sediments, and assesses the potential biotoxic substances present in TWPLs. P-TWPs reduced the denitrification rate by 17.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:
Estuarine intertidal habitats provide a dynamic and distinctive environment for the transport of microplastics, yet their migration and accumulation in these areas remain poorly understood. Herein, the spatial distribution patterns of microplastics in the estuarine sedimentary environment of the Yellow River Delta were investigated across elevation and depth gradients. Compared to the subtidal and supratidal zones, the estuarine intertidal zone exhibited the highest microplastic abundance in sediment (1027 ± 29 items/kg).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!