Purpose: Major depressive disorder (MDD) is a common mood disorder. However, it still remains challenging to select sensitive biomarkers and establish reliable diagnosis methods currently. This study aimed to investigate the abnormalities of the spontaneous brain activity in the MDD and explore the clinical diagnostic value of three amplitude metrics in altered regions by applying the support vector machine (SVM) method.

Methods: A total of fifty-two HCs and forty-eight MDD patients were recruited in the study. The amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF) and percent amplitude of fluctuation (PerAF) metrics were calculated to assess local spontaneous brain activity. Then we performed correlation analysis to examine the association between cerebral abnormalities and clinical characteristics. Finally, SVM analysis was applied to conduct the classification model for evaluating the diagnostic value.

Results: Two-sample t-test exhibited that MDD patients had increased ALFF value in the right caudate and corpus callosum, increased fALFF value in the same regions and increased PerAF value in the inferior parietal lobule and right caudate compared to HCs. Moreover, PerAF value in the inferior parietal lobule was negatively correlated with the slow factor scores. The SVM results showed that a combination of mean ALFF and fALFF in the right caudate and corpus callosum selected as features achieved a highest area under curve (AUC) value (0.89), accuracy (79.79%), sensitivity (65.12%) and specificity (92.16%).

Conclusion: Collectively, we found increased mean ALFF and fALFF may serve as a potential neuroimaging marker to discriminate MDD and HCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2022.03.079DOI Listing

Publication Analysis

Top Keywords

major depressive
8
depressive disorder
8
support vector
8
vector machine
8
spontaneous brain
8
brain activity
8
mdd patients
8
amplitude low-frequency
8
low-frequency fluctuation
8
increased alff
8

Similar Publications

Background: Alzheimer's disease (AD) is the most common tauopathy and characterized by the progressive accumulation of Aß and tau. Tau is expressed in two major isoforms containing either 3 or 4 c-terminal repeats labeled as 3R and 4R tau. While these two isoforms occur in roughly equimolar ratios in AD, most research focus and mouse models of tau center only the 4Rtau protein and not 3Rtau.

View Article and Find Full Text PDF

Background: Patients with Alzheimer's Disease (AD) frequently manifest comorbid neuropsychiatric symptoms (NPS) with depression and anxiety being most prevalent. Previously we identified shared genetic risk loci between AD and major depressive disorder (MDD). In another study, we constructed a polygenic risk score (PRS) based on MDD-GWAS data and demonstrated its performance in predicting depression onset in LOAD patients.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Transformative Molecular Medicine, Case western Reserve University, Cleveland, OH, USA.

Background: Alzheimer's disease (AD) is a severe neurodegenerative condition that affects millions of people worldwide. The TgF344 AD rat model, which exhibits early depression-like behavior followed by later cognitive impairment, is widely used to evaluate putative biomarkers and potential treatments for AD. The P7C3 neuroprotective compounds have shown protective efficacy for both brain pathology and neuropsychiatric impairment in this model.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

G. H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.

Background: Neuropsychiatric Symptoms (NPS) (e.g., aggression, psychosis, anxiety, apathy, depression, agitation, sleep disturbances, repetitive behaviors) occur in 85% of AD patients, and are associated with accelerated decline, out-of-home placement, increased costs, and greatly increased suffering of patients and families.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a serious societal concern and is considered a major risk factor for the development of Alzheimer's disease (AD) and related dementias. Identifying shared pathological mediators that contribute to the progression of AD following TBI may allow therapeutic targeting to reduce the likelihood of developing AD following TBI. Cerebrovascular dysfunction is present in both AD and TBI, and thrombin has been implicated as a mediator of cerebrovascular dysfunction and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!