Structural basis of human IL-18 sequestration by the decoy receptor IL-18 binding protein in inflammation and tumor immunity.

J Biol Chem

Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium; Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium. Electronic address:

Published: May 2022

Human Interleukin-18 (IL-18) is an omnipresent proinflammatory cytokine of the IL-1 family with central roles in autoimmune and inflammatory diseases and serves as a staple biomarker in the evaluation of inflammation in physiology and disease, including the inflammatory phase of COVID-19. The sequestration of IL-18 by its soluble decoy receptor IL-18-Binding Protein (IL-18BP) is critical to the regulation of IL-18 activity. Since an imbalance in expression and circulating levels of IL-18 is associated with disease, structural insights into how IL-18BP outcompetes binding of IL-18 by its cognate cell-surface receptors are highly desirable; however, the structure of human IL-18BP in complex with IL-18 has been elusive. Here, we elucidate the sequestration mechanism of human IL-18 mediated by IL-18BP based on the crystal structure of the IL-18:IL-18BP complex. These detailed structural snapshots reveal the interaction landscape leading to the ultra-high affinity of IL-18BP toward IL-18 and identify substantial differences with respect to previously characterized complexes of IL-18 with IL-18BP of viral origin. Furthermore, our structure captured a fortuitous higher-order assembly between IL-18 and IL-18BP coordinated by a disulfide-bond distal to the binding surface connecting IL-18 and IL-18BP molecules from different complexes, resulting in a novel tetramer with 2:2 stoichiometry. This tetrapartite assembly was found to restrain IL-18 activity more effectively than the canonical 1:1 complex. Collectively, our findings provide a framework for innovative, structure-driven therapeutic strategies and further functional interrogation of IL-18 in physiology and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111989PMC
http://dx.doi.org/10.1016/j.jbc.2022.101908DOI Listing

Publication Analysis

Top Keywords

il-18
15
il-18 il-18bp
12
human il-18
8
decoy receptor
8
physiology disease
8
il-18bp
8
il-18 activity
8
structural basis
4
human
4
basis human
4

Similar Publications

Inflammation is a probable biological pathway underlying the relationship between diabetes and depression, but data on differences between diabetes types and symptom clusters of depression are scarce. Therefore, this cross-sectional study aimed to compare associations of a multimarker panel of biomarkers of inflammation with depressive symptoms and its symptom clusters between people with type 1 diabetes (T1D) and type 2 diabetes (T2D). This cross-sectional study combined data from five studies including 1260 participants (n = 706 T1D, n = 454 T2D).

View Article and Find Full Text PDF

The pathogenesis of depression: roles of connexin 43-based gap junctions and inflammation.

Eur J Pharmacol

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; Hunan University of Traditional Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208 Hunan, China. Electronic address:

Background: Depression is a leading chronic mental illness worldwide, characterized by anhedonia and pessimism. Connexin is a kind of widely distributed protein in the body. Connexin 43 (Cx43) plays an important role in the pathogenesis of depression.

View Article and Find Full Text PDF

Increased reactive astrocytes and NLRC4-mediated neuronal pyroptosis in advanced visual structures contralateral to the optic nerve crush eye in mice.

Exp Eye Res

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic center, Sun Yat-sen University, Guangzhou 510000, Guangdong, China. Electronic address:

Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. This study aims to explore the potential mechanisms by which solute carrier family 7 member 11 (SLC7A11) influences RA development.

Methods: Collagen-induced arthritis (CIA) mice were constructed to observe disease onset and pathological scores.

View Article and Find Full Text PDF

Background: Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids.

Methods: Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!