Bacterial cellulose (BC) is synthesized as a valuable extracellular biopolymer by several bacteria belonging to the genera of Acetobacter, Achromobacter, Komagataeibacter, Agrobacterium, Bacillus, Azotobacter, Sarcinia, Lactobacillus and Gluconacetobacter. Unlike plant cellulose, since BC does not contain lignin, hemicellulose, pectin, arabinose and other plant-derived contaminants, it can be obtained purely from the culture media without any purification processes. BC exhibits excellent physicochemical and mechanical properties such as purity, high crystallinity, transparency, porosity, high water holding capacity, ultrafine nanoscale fiber network, tensile strength, high degree of polymerization, high surface area, chemical stability and proton conductivity. In addition, BC has become an essential nanomaterial in many industrial processes as it is biocompatible, biodegradable and renewable. In this respect, researchers are focused on the production of BC using low-cost substrates, investigation of potential BC producers, optimization of cultivation conditions, and modification of BC pellicles with different procedures. Based on these researches, this review of recent progress in bacterial cellulose production, both in vivo and in vitro modifications of surface properties of BC and its industrial applications in different areas are discussed in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-022-03271-y | DOI Listing |
Sci Rep
January 2025
Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
Polysaccharides are recognized for their extensive biological functions, holding significant promise for applications in both medicine and food industries. However, their utilization is frequently constrained by challenges such as high molecular weights and indistinct sugar chain structures. Recently, two novel bacterial strains, N6 and J3, were isolated from the Nakdong River in Korea.
View Article and Find Full Text PDFbioRxiv
January 2025
Chemical and Biological Engineering - Iowa State University, 618 Bissell Rd, Ames, IA 50011.
Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
NBFC - National Biodiversity Future Center, 90133 Palermo, Italy; University of Naples Federico II, Department of Biology, Naples, Italy. Electronic address:
Bio-valorization of agri-food wastes lies in their possible conversion into fermented foodstuffs/beverages and/or biodegradable polymers such as bacterial cellulose. In this study, three different kombucha cultures were formulated using agri-food waste materials, citrus fruit residues and used coffee grounds, as alternative carbon and nitrogen sources, respectively. Over 21 days of fermentation, the kinetic profile was followed by monitoring cell number, pH variation, minerals, trace elements and production of bacterial cellulose.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!