Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tripartite motif (TRIM) E3 ligases target specific substrates, including viral proteins, for proteasomal degradation, and are thus essential regulators of the innate antiviral response. TRIM69 ubiquitinates the non-structural NS3 protein of Dengue virus for its degradation by the host machinery. This antiviral strategy abrogates the immunosuppression mediated by the NS2B-NS3 protease complex. To understand how this host-driven antiviral response against Dengue virus, we sought to define the mode of interaction between human TRIM69 and Dengue NS2B-NS3 and the subsequent polyubiquitination of the protease by the E3 ligase. We show that NS2B-NS3Δpro is sufficient as a substrate for ubiquitination by TRIM69 using ELISA and in vitro assays. Using hydrogen-deuterium exchange mass spectrometry (HDXMS), we mapped the interface of the interaction between TRIM69 and NS2B-NS3Δpro, and propose a rationale for the binding and subsequent ubiquitination process. Furthermore, through sequence analysis, we showed that the regions targeted by TRIM69 on the DENV-2 NS3 protease (NS3Δpro) are well conserved across DENV serotypes and other flaviviruses, including Zika virus, West Nile virus, and Japanese encephalitis virus. Our results show the direct interactions of TRIM69 with viral proteins, provide mechanistic insights at a molecular level, and highlight the functional relevance of TRIM69 interacting with the Dengue viral protein. Collectively, our findings suggest that TRIM69 may act as a pan-antiflaviviral restriction factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072344 | PMC |
http://dx.doi.org/10.1007/s00018-022-04245-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!