Previous studies have demonstrated that cardiomyocyte apoptosis, ferroptosis, and inflammation participate in the progress of sepsis-induced cardiomyopathy (SIC). Although Islet cell autoantigen 69 (ICA69) is an imperative molecule that could regulate inflammation and immune response in numerous illnesses, its function in cardiovascular disease, particularly in SIC, is still elusive. We confirmed that LPS significantly enhanced the expression of ICA69 in wild-type (WT) mice, macrophages, and cardiomyocytes. The knockout of ICA69 in lipopolysaccharide(LPS)-induced mice markedly elevated survival ratio and heart function, while inhibiting cardiac muscle and serum inflammatory cytokines, reactive oxygen (ROS), and ferroptosis biomarkers. Mechanistically, increased expression of ICA69 triggered the production of STING, which further resulted in the production of intracellular lipid peroxidation, eventually triggering ferroptosis and heart injury. Intriguingly, ICA69 deficiency only reversed the ferroptotic marker levels, such as prostaglandin endoperoxide synthase 2 (PTGS2), malonaldehyde (MDA), 4-hydroxynonenal (4HNE), glutathione peroxidase 4 (GPX4), superoxide dismutase (SOD), iron and lipid ROS, but had no effects on the xCT-dependent manner. Additionally, greater ICA69 level was identified in septic patients peripheralblood mononuclear cells (PBMCs) than in normal control groups. Generally, we unveil that ICA69 deficiency can relieve inflammation and ferroptosis in LPS-induced murine hearts and macrophages, making targeting ICA69 in heart a potentially promising treatment method for SIC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994779 | PMC |
http://dx.doi.org/10.1038/s41420-022-00957-y | DOI Listing |
Heliyon
July 2024
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Indore bypass Road, Bhopal 462 066, Madhya Pradesh, India.
Intracellular membrane tubules play a crucial role in diverse cellular processes, and their regulation is facilitated by Bin-Amphiphysin-Rvs (BAR) domain-containing proteins. This study investigates the roles of ICA69 (dICA69) (an N-BAR protein) and CIP4 (dCIP4) (an F-BAR protein), focusing on their impact on membrane tubule organization. In contrast to the prevailing models of BAR-domain protein function, we observed colocalization of endogenous dICA69 with dCIP4-induced tubules, indicating their potential recruitment for tubule formation and maintenance.
View Article and Find Full Text PDFFront Mol Neurosci
May 2023
Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
Long-term potentiation (LTP) is one of the major cellular mechanisms for learning and memory. Activity-dependent increases in surface AMPA receptors (AMPARs) are important for enhanced synaptic efficacy during LTP. Here, we report a novel function of a secretory trafficking protein, ICA69, in AMPAR trafficking, synaptic plasticity, and animal cognition.
View Article and Find Full Text PDFCell Death Discov
April 2022
Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Previous studies have demonstrated that cardiomyocyte apoptosis, ferroptosis, and inflammation participate in the progress of sepsis-induced cardiomyopathy (SIC). Although Islet cell autoantigen 69 (ICA69) is an imperative molecule that could regulate inflammation and immune response in numerous illnesses, its function in cardiovascular disease, particularly in SIC, is still elusive. We confirmed that LPS significantly enhanced the expression of ICA69 in wild-type (WT) mice, macrophages, and cardiomyocytes.
View Article and Find Full Text PDFJ Clin Invest
March 2022
Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Bin/amphiphysin/Rvs (BAR) domains are positively charged crescent-shaped modules that mediate curvature of negatively charged lipid membranes during remodeling processes. The BAR domain proteins PICK1, ICA69, and the arfaptins have recently been demonstrated to coordinate the budding and formation of immature secretory granules (ISGs) at the trans-Golgi network. Here, we identify 4 coding variants in the PICK1 gene from a whole-exome screening of Danish patients with diabetes that each involve a change in positively charged residues in the PICK1 BAR domain.
View Article and Find Full Text PDFSci Rep
February 2021
Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Building "C", Largo E. Meneghetti, 2, 35131, Padua, Italy.
Based on previous results demonstrating that complexes of a mutant α1-antitrypsin with the heat shock proteins (HSP)70 and glucose-regulated protein94 (Grp94) circulate in the blood of patients with type 1 diabetes, we raised the hypothesis that these complexes could represent the primary antigen capable of triggering the autoimmune reactions leading to overt diabetes. As a first approach to this issue, we searched whether A1AT and HSPs had a sequence similarity to major islet antigen proteins so as to identify among the similar sequences those with potential relevance for the pathogenesis of diabetes. A thorough in silico analysis was performed to establish the score of similarity of the human proteins: A1AT, pro-insulin (INS), GAD65, IAPP, IA-2, ICA69, Grp94, HSP70 and HSP60.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!