Background: Soluble cello-oligosaccharides (COS, β-1,4-D-gluco-oligosaccharides with degree of polymerization DP 2-6) have been receiving increased attention in different industrial sectors, from food and feed to cosmetics. Development of large-scale COS applications requires cost-effective technologies for their production. Cascade biocatalysis by the three enzymes sucrose-, cellobiose- and cellodextrin phosphorylase is promising because it enables bottom-up synthesis of COS from expedient substrates such as sucrose and glucose. A whole-cell-derived catalyst that incorporates the required enzyme activities from suitable co-expression would represent an important step towards making the cascade reaction fit for production. Multi-enzyme co-expression to reach distinct activity ratios is challenging in general, but it requires special emphasis for the synthesis of COS. Only a finely tuned balance between formation and elongation of the oligosaccharide precursor cellobiose results in the desired COS.
Results: Here, we show the integration of cellodextrin phosphorylase into a cellobiose-producing whole-cell catalyst. We arranged the co-expression cassettes such that their expression levels were upregulated. The most effective strategy involved a custom vector design that placed the coding sequences for cellobiose phosphorylase (CbP), cellodextrin phosphorylase (CdP) and sucrose phosphorylase (ScP) in a tricistron in the given order. The expression of the tricistron was controlled by the strong T7 promoter and strong ribosome binding sites (RBS) for each open reading frame. The resulting whole-cell catalyst achieved a recombinant protein yield of 46% of total intracellular protein in an optimal ScP:CbP:CdP activity ratio of 10:2.9:0.6, yielding an overall activity of 315 U/g dry cell mass. We demonstrated that bioconversion catalyzed by a semi-permeabilized whole-cell catalyst achieved an industrial relevant COS product titer of 125 g/L and a space-time yield of 20 g/L/h. With CbP as the cellobiose providing enzyme, flux into higher oligosaccharides (DP ≥ 6) was prevented and no insoluble products were formed after 6 h of conversion.
Conclusions: A whole-cell catalyst for COS biosynthesis was developed. The coordinated co-expression of the three biosynthesis enzymes balanced the activities of the individual enzymes such that COS production was maximized. With the flux control set to minimize the share of insolubles in the product, the whole-cell synthesis shows a performance with respect to yield, productivity, product concentration and quality that is promising for industrial production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994397 | PMC |
http://dx.doi.org/10.1186/s12934-022-01781-w | DOI Listing |
Sci Rep
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.
D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.
View Article and Find Full Text PDFMicrob Biotechnol
December 2024
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia.
Plant-derived triterpenoids are in high demand due to their valuable applications in cosmetic, nutraceutical, and pharmaceutical industries. To meet this demand, microbial production of triterpenoids is being developed for large-scale production. However, a prominent limitation of microbial synthesis is the intracellular accumulation, requiring cell disruption during downstream processing.
View Article and Find Full Text PDFJ Biotechnol
December 2024
State Key L0061boratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China. Electronic address:
Surface display technology has garnered significant attention for preparing efficient whole cell catalysts, while reported carrier proteins still cannot meet the demand to display various passenger domains, especially for those with high molecular weight. This study demonstrates that the autotransporter of esterase Est7 (E7AT) from Stenotrophomonas maltophilia played a decisive role in its efficient surface display. Guided by the original signal peptide, the surface display ratio of Est7 was determined as 89.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
Angew Chem Int Ed Engl
December 2024
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
Biocatalytic transformation in nature is inherently dynamic, spontaneous, and adaptive, enabling complex chemical synthesis and metabolism. These processes often involve supramolecular recognition among cells, enzymes, and biomacromolecules, far surpassing the capabilities of isolated cells and enzymes used in industrial synthesis. Inspired by nature, here we design a supramolecular approach to equip living cells with these capacities, enabling recyclable, efficient cascade reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!