Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rationale of this paper is to shed some light on the origin of the optical response of two similar chiral fluorene copolymers in correlation with their vibrational modes, to understand how a chiral center placed in a ramification affects the optical properties of the main chain. Various spectroscopic ellipsometric techniques, in the scope of the Stokes theory were used to characterize the optical-vibrational behavior of the polyfluorenes: ellipsometry in emission (EE), transmission (TE), and Raman (ERS). The results showed that the optical activity and the emission of the circularly polarized light depends substantially on the interaction of the chiral carbon in the ramification and the main chain through specific optically active vibrational modes, for each sample. One interesting achievement was to find the absolute dextrorotatory configuration of the studied molecules, that could induce a helicoidal structure to the entire material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.121180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!