Primers are critical for polymerase chain reaction (PCR) and influence PCR experimental outcomes. Designing numerous combinations of forward and reverse primers involves various primer constraints, posing a computational challenge. Most PCR primer design methods limit parameters because the available algorithms use general fitness functions. This study designed new fitness functions based on user-specified parameters and used the functions in a primer design approach based on the multiobjective particle swarm optimization (MOPSO) algorithm to address the challenge of primer design with user-specified parameters. Multicriteria evaluation was conducted simultaneously based on primer constraints. The fitness functions were evaluated using 7425 DNA sequences and compared with a predominant primer design approach based on optimization algorithms. Each DNA sequence was run 100 times to calculate the difference between the user-specified parameters and primer constraint values. The algorithms based on fitness functions with user-specified parameters outperformed the algorithms based on general fitness functions for 11 primer constraints. Moreover, MOPSO exhibited superior implementation in all experiments. Practical gel electrophoresis was conducted to verify the PCR experiments and established that MOPSO effectively designs primers based on user-specified parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbac121DOI Listing

Publication Analysis

Top Keywords

user-specified parameters
24
primer design
20
fitness functions
20
primer constraints
12
primer
10
pcr primer
8
general fitness
8
based user-specified
8
functions primer
8
design approach
8

Similar Publications

A life cycle inventory (LCI) dataset for food waste management was developed using secondary data from scientific literature and government reports. EPA reports on food waste management were used as the basis for collecting literature to review. Unit process parameters from the reviewed literature are compiled and combined with engineering calculations to generate LCI for food management pathways.

View Article and Find Full Text PDF

MixtureFinder: Estimating DNA mixture models for phylogenetic analyses.

Mol Biol Evol

December 2024

Ecology and Evolution, Research School of Biology, College of Science, Australian National University, Canberra, ACT 2600, Australia.

In phylogenetic studies, both partitioned models and mixture models are used to account for heterogeneity in molecular evolution among the sites of DNA sequence alignments. Partitioned models require the user to specify the grouping of sites into subsets, and then assume that each subset of sites can be modelled by a single common process. Mixture models do not require users to pre-specify subsets of sites, and instead calculate the likelihood of every site under every model, while co-estimating the model weights and parameters.

View Article and Find Full Text PDF

Understanding the influence of the cellular environment on protein conformations is crucial for elucidating protein functions within living cells. In studies using molecular dynamics (MD) simulation, carbon nanotubes and hydrophobic cages have been widely used to emulate the cellular environment inside specific large biomolecules such as ribosome tunnels and chaperones. However, recent studies suggest that these uniform hydrophobic models may not adequately capture the environmental effects inside each biomolecule.

View Article and Find Full Text PDF

Compound identification is at the center of metabolomics, usually by comparing experimental mass spectra against library spectra. However, most compounds are not commercially available to generate library spectra. Hence, for such compounds, MS/MS spectra need to be predicted.

View Article and Find Full Text PDF

Recent advances enable the creation of nanoscale building blocks with complex geometries and interaction specificities for self-assembly. This nearly boundless design space necessitates design principles for defining the mutual interactions between multiple particle species to target a user-specified complex structure or pattern. In this article, we develop a symmetry-based method to generate the interaction matrices that specify the assembly of two-dimensional tilings, which we illustrate using equilateral triangles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!