AI Article Synopsis

  • Climate change significantly impacts wildlife, prompting potential rapid evolutionary changes due to strong selective pressures.
  • Most research has concentrated on how climate affects the timing of events in nature, but there’s a gap in studies examining how climate influences physical traits in wild populations.
  • Our study of grass snakes from 1981-2013 found that the prevalence of black morphs was negatively impacted by rising spring temperatures and increased winter severity, suggesting that climate variables play a crucial role in the survival and traits of these populations.

Article Abstract

Climate change is one of the greatest challenges that wildlife is facing. Rapid shifts in climatic conditions may accelerate evolutionary changes in populations as a result of strong selective pressure. Most studies focus on the impact of climatic conditions on phenologies and annual cycles, whereas there are fewer reports of empirical support for climate-driven changes in the phenotypic variability of free-living populations. We investigated whether climatic variables explain the prevalence of colour polymorphism in a population of the grass snake (Natrix natrix) with two morphotypes, the melanistic and non-melanistic ones, in the period 1981-2013. We found that the prevalence of the black phenotype was negatively related to spring temperature and winter harshness, expressed as the number of snow days. According to the thermal melanism hypothesis, a high predation rate during warmer springs may override relaxed thermal benefits and vice versa, i.e. black individuals may perform better than typical ones when thermal conditions in spring are unfavourable. In turn, because they are smaller, melanistic individuals may be exposed to a higher risk of winter mortality, particularly during longer winters. We highlight the need for more studies on the effects of climatic conditions on temporal variation in melanism prevalence in other populations and species as well as in various geographic regions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00484-022-02279-1DOI Listing

Publication Analysis

Top Keywords

climatic conditions
16
climatic
5
prevalence
4
conditions prevalence
4
prevalence melanistic
4
melanistic snakes-contrasting
4
snakes-contrasting effects
4
effects warm
4
warm springs
4
springs mild
4

Similar Publications

Climate change significantly impacts the risk of eutrophication and, consequently, chlorophyll-a (Chl-a) concentrations. Understanding the impact of water flows is a crucial first step in developing insights into future patterns of change and associated risks. In this study, the Statistical DownScaling Model (SDSM)-a widely used daily downscaling method-is implemented to produce downscaled local climate variables, which serve as input for simulating future hydro-climate conditions using a hydrological model.

View Article and Find Full Text PDF

Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.

View Article and Find Full Text PDF

As one of their key regulatory ecosystem functions, inland lakes serve as CO sinks. The CO sink capacity of inland lakes depends on their water temperature and salinity as well as their water volume which are all highly sensitive to climate conditions. This paper aims to quantitatively estimate the change in the CO sink capacity of Wadi El-Rayan Lakes under climate change scenarios.

View Article and Find Full Text PDF

Ocean acidification and global warming may favor blue carbon service in a Cymodocea nodosa community by modifying carbon metabolism and dissolved organic carbon fluxes.

Mar Pollut Bull

January 2025

Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.

Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e.

View Article and Find Full Text PDF

In recent decades significant forest expansion into treeless alpine zones has been observed across global mountain ranges, including the Alps, driven by a complex interplay of global warming and land-use changes. The upward shift of treelines has far-reaching implications for ecosystem functioning, biodiversity, and biogeochemical cycles. However, climate variables alone account for only a fraction of treeline dynamics, highlighting substantial research gaps concerning the influence of non-climatic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!