Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The NAD-dependent deacetylase, sirtuin 1 (SIRT1), plays an important role in vascular calcification induced by high glucose and/or high phosphate levels. However, the mechanism by which SIRT1 regulates this process is still not fully understood. Thus, this study aimed to determine the role of high glucose and phosphate in vascular calcification and the molecular mechanisms underlying SIRT1 regulation.
Methods: Vascular smooth muscle cells (VSMCs) were cultured under normal, high phosphate, and/or high-glucose conditions for 9 days. Alizarin red staining and calcification content analyses were used to determine calcium deposition. VSMC senescence was detected by β-galactosidase (SA-β-Gal) staining and p21 expression.
Results: Mouse VSMCs exposed to high phosphate and high glucose in vitro showed increased calcification, which was correlated with the induction of cell senescence, as confirmed by the increased SA-β-galactosidase activity and p21 expression. SRT1720, an activator of SIRT1, inhibits p65 acetylation, the nuclear factor-κ-gene binding (NF-κB) pathway, and VSMC transdifferentiation, prevents senescence and reactive oxygen species (ROS) production, and reduces vascular calcification. In contrast, sirtinol, an inhibitor of SIRT1, increases p65 acetylation, activates the NF-κB pathway, induces vascular smooth muscle cell transdifferentiation and senescence, and promotes vascular calcification.
Conclusions: High glucose and high phosphate levels induce senescence and vascular calcification in VSMCs, and the combined effect of high glucose and phosphate can inhibit SIRT1 expression. SIRT1 inhibits vascular smooth muscle cell senescence and osteogenic differentiation by inhibiting NF-κB activity, thereby inhibiting vascular calcification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11255-022-03195-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!