Cryptotanshinone (CTN) has shown its neuroprotective and anti-inflammatory qualities in non-genetic mouse model of Alzheimer's disease. According to bioinformatics analysis, CTN and Signal Transducer and Activator of Transcription 3 (STAT3) may interact to form a drug-target network. This study was conducted to identify the role of CTN-STAT3 interaction in Parkinson's disease (PD). PD model was established with MMP-stimulated SH-SY5Y cells. After pre-treatment with CTN or co-treatment with CTN and STAT3 agonist, MTT assay was performed to observe cell viability; ELISA kit was used to measure the expression level of pro-inflammatory cytokines; DCFH-DA and corresponding assay kits were employed to determine the production of ROS, SOD, CAT and GSH-px; TUNEL assay and western blot were performed to detect cell apoptosis. STAT3 activity was also detected by western blot. Treatment with CTN alone had no impact on SH-SY5Y cell viability, but CTN pre-treatment effectively improved MPP-induced loss of viability in SH-SY5Y cells. Moreover, pre-treatment with CTN inhibited MPP-induced oxidative stress, apoptosis and STAT3 activity in SH-SY5Y cells, whereas this inhibitory effect was diminished after additional treatment with STAT3 agonist. CTN ameliorates MPP-induced oxidative stress and apoptosis of SH-SY5Y neuroblastoma cells by inhibiting the expression of STAT3. Therefore, CTN could be a promising therapeutic agent, and STAT3 could be a potential target for PD treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11011-022-00905-w | DOI Listing |
Int J Mol Sci
January 2025
College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
Cicadae Periostracum (CP) is a traditional Chinese animal-derived medicine with the potential to treat Parkinson's disease (PD). This study aims to explore the pharmacodynamic mechanisms of CP against PD-based on metabolomics technology and provide a theoretical basis for developing new anti-PD medicine. First, MPP-induced SH-SY5Y cells were used to evaluate the anti-PD activity of CP.
View Article and Find Full Text PDFHistol Histopathol
January 2025
Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Jiangsu, PR China.
Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Botony, P.S.R College of Education, Sivakasi, Tamilnadu India.
This study aims to assess the neuroprotective effects of the methanolic extract of against oxidative stress and cell death induced by neurotoxins MPP in SH-SY5Y cells. Briefly, the methanolic extract of decreased the cytotoxicity of MPP in SH-SY5Y cells. Treatment with extract at a concentration of 400 µg/ml resulted in a notable decrease in cell death, particularly in MPP -induced cells.
View Article and Find Full Text PDFChin Med
November 2024
College of Pharmaceutical Sciences, Southwest University, No.1 Tiansheng Road, Beibei District, Chongqing, 400715, China.
Background: Parkinson's disease (PD) is a chronic neurodegenerative disorder that currently has no curable strategies. More and more evidence suggests that endoplasmic reticulum (ER) stress plays an essential role in PD pathogenesis. Periplaneta americana L.
View Article and Find Full Text PDFFront Aging Neurosci
October 2024
Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
Background: In Parkinson's disease (PD) brains, microglia are activated to release inflammatory factors to induce the production of reactive oxygen species (ROS) in neuron, and vice versa. Moreover, neuroinflammation and its synergistic interaction with oxidative stress contribute to the pathogenesis of PD.
Methods: In this study, we investigated whether in-house synthetic coumarin-chalcone derivatives protect human microglia HMC3 and neuroblastoma BE(2)-M17 cells against 1-methyl-4-phenyl pyridinium (MPP)-induced neuroinflammation and associated neuronal damage.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!