A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High performance recycled CFRP composites based on reused carbon fabrics through sustainable mild solvolysis route. | LitMetric

A novel environmentally friendly recycling method is developed for large carbon-fibers reinforced-polymers composite panels whose efficiency is demonstrated through a proof-of-concept fabrication of a new composite part based on recycled fibers. The recycling process relies on formic acid as separation reagent at room temperature and atmospheric pressure with efficient recycling potential of the separating agent. Electron microscopy and thermal analysis indicate that the recycled fibers are covered by a thin layer of about 10wt.% of residual resin, alternating with few small particles, as compared to the smooth virgin fibers. The recycled composites show promising shear strength and compression after impact strength, with up to 93% retention of performance depending on the property as compared to the reference. The recycled carbon fibers can thus be reused for structural applications requiring moderate to high performances. The loss of properties is attributed to a lower adhesion between fresh epoxy resin and recycled carbon fibers due to the absence of sizing, partly compensated by a good interface between fresh and residual cured epoxy thanks to mechanical anchoring as well as chemical reactions. The room temperature and atmospheric pressure operating conditions combined to the recyclability of the forming acid contribute to the sustainability of the entire approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8993918PMC
http://dx.doi.org/10.1038/s41598-022-09932-0DOI Listing

Publication Analysis

Top Keywords

recycled fibers
8
room temperature
8
temperature atmospheric
8
atmospheric pressure
8
recycled carbon
8
carbon fibers
8
recycled
6
fibers
5
high performance
4
performance recycled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!