A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Semi-Automated Workflow for Brain Slice Histology Alignment, Registration, and Cell Quantification (SHARCQ). | LitMetric

Tools for refined cell-specific targeting have significantly contributed to understanding the characteristics and dynamics of distinct cellular populations by brain region. While advanced cell-labeling methods have accelerated the field of neuroscience, specifically in brain mapping, there remains a need to quantify and analyze the data. Here, by modifying a toolkit that localizes electrodes to brain regions (SHARP-Track; Slice Histology Alignment, Registration, and Probe-Track analysis), we introduce a post-imaging analysis tool to map histological images to established mouse brain atlases called SHARCQ (Slice Histology Alignment, Registration, and Cell Quantification). The program requires MATLAB, histological images, and either a manual or automatic cell count of the unprocessed images. SHARCQ simplifies the post-imaging analysis pipeline with a step-by-step GUI. We demonstrate that SHARCQ can be applied for a variety of mouse brain images, regardless of histology technique. In addition, SHARCQ rectifies discrepancies in mouse brain region borders between atlases by allowing the user to select between the Allen Brain Atlas or the digitized and modified Franklin-Paxinos Atlas for quantifying cell counts by region. SHARCQ produces quantitative and qualitative data, including counts of brain-wide region populations and a 3D model of registered cells within the atlas space. In summary, SHARCQ was designed as a neuroscience post-imaging analysis tool for cell-to-brain registration and quantification with a simple, accessible interface. All code is open-source and available for download (https://github.com/wildrootlab/SHARCQ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034756PMC
http://dx.doi.org/10.1523/ENEURO.0483-21.2022DOI Listing

Publication Analysis

Top Keywords

slice histology
12
histology alignment
12
alignment registration
12
post-imaging analysis
12
mouse brain
12
brain
8
registration cell
8
cell quantification
8
brain region
8
analysis tool
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!