[Analysis of A Pedigree with Hereditary Coagulation Factor Ⅻ Deficiency Caused by Compound Heterozygous Mutations].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Sichuan Provincial Key Laboratory for Human Disease Gene Study, Affiliated Hospital of the University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China,Prenatal Diagnosis Center, Affiliated Hospital of the University of Electronic Science and Technology, Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province,

Published: April 2022

Objective: To analysis clinical phenotype and potential genetic cause of a family affected with hereditary coagulation factor Ⅻ deficiency.

Methods: The prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), D-Dimer (D-D), coagulation factor Ⅻ activity (FⅫ:C) and coagulation factor Ⅻ antigen (FⅫ:Ag) were determined for phenotype diagnosis of the proband and his family members(3 generations and 5 people). Targeted capture and whole exome sequencing were performed in peripheral blood sample of the proband. Possible disease-causing mutations of F12 gene were obtained and further confirmed by Sanger sequencing. The corresponding mutation sites of the family members were analyzed afterwards. The online bioinformatics software AutoPVS1 and Mutation Taster was used to predict the effects of mutation sites on protein function.

Results: The APTT of the proband was significantly prolonged, reaching 180.9s. FⅫ:C and FⅫ:Ag of the proband was significantly reduced to 0.8% and 4.17%, respectively. The results of whole exome sequencing displayed that there were compound heterozygous mutations in F12 gene of the proband, including the c.1261G>T heterozygous nonsense mutation in exon 11 (causing p.Glu421*) and the c.251dupG heterozygous frameshift mutation in exon 4 (causing p.Trp85Metfs*53). Both mutations are loss of function mutations with very strong pathogenicity, leading to premature termination of the protein. AutoPVS1 and Mutation Taster software predicted both mutations as pathogenic mutations. The results of Sanger sequencing revealed that c.1261G>T heterozygous mutation of the proband was inherited from his mother, for which his brother and his daughter were c.1261G>T heterozygous carriers. Genotype-phenotype cosegregation was observed in this family.

Conclusion: The c.1261G>T heterozygous nonsense mutation in exon 11 and the c.251dupG heterozygous frameshift mutation in exon 4 of the F12 gene probably account for coagulation factor Ⅻ deficiency in this family. This study reports two novel pathogenic F12 mutations for the first time worldwide.

Download full-text PDF

Source
http://dx.doi.org/10.19746/j.cnki.issn.1009-2137.2022.02.042DOI Listing

Publication Analysis

Top Keywords

coagulation factor
20
factor Ⅻ
20
c1261g>t heterozygous
16
mutation exon
16
f12 gene
12
mutation
9
hereditary coagulation
8
Ⅻ deficiency
8
heterozygous
8
compound heterozygous
8

Similar Publications

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

To evaluate the effectiveness and feasibility of the copper bianstone scraping combined with Chinese modified termination hypertension dietary therapy program by comparing and analyzing the improvement of blood pressure, blood lipids and blood glucose in hypertensive patients who received copper bianstone scraping combined with Chinese modified termination hypertension dietary therapy intervention. We selected 160 cases of hypertensive patients from July 2022 to March 2024 for the study. They were divided into 80 cases in the comparison group and 80 cases in the observation group according to whether or not they underwent copper bianstone scraping combined with Chinese modified dietary therapy for termination of hypertension.

View Article and Find Full Text PDF

This study discusses disseminated intravascular coagulation (DIC) associated with solid cancers and various vascular abnormalities, both of which generally exhibit chronic DIC patterns. Solid cancers are among the most significant underlying diseases that induce DIC. However, the severity, bleeding tendency, and progression of DIC vary considerably depending on the type and stage of the cancer, making generalization difficult.

View Article and Find Full Text PDF

Valence and salience encoding in the central amygdala.

Elife

January 2025

Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States.

The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!